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Abstract: Morphologic and genetic alterations play crucial roles in tumorigenesis, and 

are the foundation of diagnosis in cancer research. However, visualization of tumor 

morphology often requires staining which compromises the genetic material, making 

the interpretation of genetic alterations a challenge. Histological staining is especially 

detrimental when measuring the transcriptomic changes that underlie  variation of 

histological features at the microscopic level. Here we propose stimulated Raman 

scattering micro-dissection sequencing (SMD-Seq), which exploits the intrinsic 

vibrational signatures of chemicals to rapidly construct label-free histological images 

of cryo-sectioned tissues, and achieves in situ laser micro-dissection of small regions of 

interest for location-specific and simultaneous transcriptome and genome analysis. We 

applied SMD-Seq to unstained cryosections of human oral squamous cell carcinoma 

(OSCC) samples. SRS images proved to be comparable to H&E staining in revealing 

the morphological characteristics of tissues, and capable of differentiating the small 

cancer regions from normal epithelium of OSCC. With significantly reduced nucleic 

acid loss, accurate identification of copy number variations, gene expression levels, and 

gene-fusion events were obtained through genome and transcriptome analysis of 

SRS-guided high-purity micro-dissected regions. The high-resolution histological 

characteristics combined with preservation of high quality genetic material from 

specific regions of interest enabled the characterization of inter- and intra-tumor 
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heterogeneity using morphological and genetic analysis. Given histopathological 

features and matched biomolecular content, SMD-Seq provides complementary 

insights in the study of cancer, and opens a window for correlative analysis between 

morphology and genome and transcriptome sequencing in complex samples with 

intrinsic genetic mosaicism. 

 

Introduction 

Both morphological and genomic alterations are key factors of tumorigenesis. In 

clinical practice, tissue-based histopathologic observation, which assesses the 

cellularity, biochemical contents, and histoarchitecture of a biopsy, is the gold standard 

for cancer diagnosis. With the emergence of high-throughput sequencing technologies, 

the genomic analysis of tumor tissues have greatly extended our understanding of 

cancer in exquisite detail
1,2

. The combination of direct assessment of histological 

features of tissue and quantitative analysis of genomic variations should in principle 

enable better comprehension of the correlation between the phenotypes and the 

genotypes of cancer. Recent studies
3-5

 have shown that the application of histology and 

genomic analysis provides complementary prognostic insight in cancer diagnosis and 

treatment. Whole genome sequencing has been extensively applied to quantitatively 

study the copy number variations (CNVs), single nucleotide variations (SNVs) and 

epigenetic modifications of cancer, and some studies have performed this analysis on 

single cancer cells
6
. RNA-Seq, on the other hand, provides gene expression profiling 

information that not only differentiates cell types and fates but also the transcriptional 

alternations such as alternative splicing, and its consequences
7
. Interestingly, for small 

amounts of cells whole genome amplification typically produces chimeras
8
 that 

become false-positives of structural variation events such as gene fusions, one of the 

major driver mutations in neoplasia. Low-input RNA-Seq may become a solution to 

solve this problem by identifying the fused transcripts
9
. Particularly, RNA-Seq is 

capable of finding potential 'transcription-induced gene fusions (TIGFs)', which are the 

results of alternative splicing between genes
10

. However, complex spatial 

architecture
11,12

 and the intra-tumor heterogeneity
13,14

 of cancer create several technical 

challenges, one of which is relating morphology to genome and transcriptome 

variations. Many protocols for sample preparation, including DNA recovery and 

amplification, have been improved to handle various kinds of tissue sections. Although 

these techniques have been successfully developed to capture trace amounts of starting 

materials such as the genomic DNA or RNA of single cells
15,16

, these methods have a 

few  intrinsic limitations when handling histologically stained tissues. First, in many 

cases the admixture of cancer tissues contain a large amount of immune and stromal 

cells
17

, which significantly contaminate and dilute the cancer signatures in the resulting 

sequencing data. Such ensemble sequencing is far from ideal to provide precise 

genomic alternations that should strongly correlate with the micro-scale histological 

cellular context, which is typically lost through lysing of complex tissues. Second, 

while laser capture micro-dissection is able to obtain morphologically pure tissue 

samples in situ at the cellular level
18

, currently this technique still relies on 
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conventional staining and fixation protocols, such as hematoxylin and eosin (H&E) 

staining, a gold standard for morphological feature identification. During the H&E 

staining process the relatively stable DNA molecules may still be preserved but most 

RNA molecules are inevitably degraded, resulting in the loss of transcriptome 

information in the micro-dissected tissue specimens with high morphological purity
19

. 

Here we present a technology that enables simultaneous genome and transcriptome 

analyses of morphologically specific, small regions of tissue guided by label-free 

microscopy and coupled with in situ laser micro-dissection. This technology employs 

stimulated Raman scattering (SRS) microscopy
20

, which exploits the intrinsic 

vibrational signatures of chemical species in order to rapidly construct histological 

images of cryo-sectioned tissues without staining or labeling, to preserve the RNA 

molecules in tissue samples. The specific small regions of interest (ROI) in the tissue 

section can be immediately dissected from the sample using the SRS microscope 

without sample transfer, enabling the capture of genetic material from a small number 

of morphologically specific cells. We applied our technology, named SRS 

micro-dissection sequencing (SMD-Seq), to characterize the heterogeneity of complex 

tissues of human oral squamous cell carcinoma (OSCC). The high-resolution and 

high-speed imaging preserves both intact histological features and vulnerable genetic 

materials in the frozen sections. We have differentiated the small cancer regions from 

normal epithelium, and obtained histology correlated genomic information to reflect 

the inter- and intra-tumor heterogeneity among patients in both genome and 

transcriptome profiles. In addition to improved CNV and SNV detection to unveil the 

genetic mosaicism in cancer, we have also shown that, with significantly reduced RNA 

loss, accurate identification of gene-fusion events can be obtained through 

transcriptome analysis of SRS-guided high-purity micro-dissected regions. 

Results  

Workflow design of SMD-Seq 

SMD-Seq (Fig. 1) is an integration of microscopic imaging, in situ dissection, and 

low-input sequencing. In order to optimize both image quality and the sequencing 

data, we had to balance the tradeoff between imaging parameters including exposure 

time and laser power, and preservation of genomic material. Typically we used a 

30-μm thick cryosection for the following analysis. To compose an image with 

histological features, we chose CH2 (2850 cm
-1

) and CH3 (2950 cm
-1

) stretching 

vibrations for contrast. These two bands were consistently present in the Raman 

spectra of both cancer and normal tissues, unlike the Raman bands within the 

fingerprint region which were not always detected in the samples(Supplementary Fig. 

1, gray region). Owing to the spatial biochemical distribution, SRS images of these 

two bands exhibited a clear difference, particularly from lipid and protein ratio
21,22

. 

For each field of view, we applied a linear combination approach
23

 to convert these 

dual-band imagesinto a reconstructed pseudo-color image, in which we represented 

protein- and lipid-rich regions with cyan and red, respectively. SRS microscopic 

images can be directly and rapidly obtained from tissue samples, generating 

high-quality and high-resolution histological images that resemble H&E staining.  
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To specifically harvest genetic material from certain tissue, we performed in situ laser 

micro-dissection on those cryosections placed on polyethylene naphthalate (PEN) 

membrane slides using the SRS microscope without sample transfer. We created a 

closed path for the regions of interest (ROI) after SRS histopathologic characterization 

and focused the scanning laser with elevated power (~180-190 mW) on the PEN 

membrane to cut the tissue slice. We then immediately recovered the dissected samples 

into a tube prepared with lysis buffer, and divided the lysate into two aliquots for DNA 

and RNA sequencing libraries preparation, separately. 

Histopathologic characterization of tissue using label-free SRS images 

We first examined if these SRS images of stain-free OSCC tissue cryosections were 

comparable to widely used H&E images for histopathologic applications. For each 

30-μm thick cryosection imaged with SRS, we kept a 5-μm adjacent section for H&E 

staining as the histological reference for further comparison and validation 

(Supplementary Fig. 2). The nondestructive SRS imaging approach provided the 

intrinsic biochemical information from the molecular components in cells. Such 

microscale information could be combined with large-scale histoarchitectural features 

to better identify tissues at the single-cell level (Fig. 2a). For example, in both SRS and 

H&E images, the epithelium displayed gradually changing cell profiles, from prolate 

squamous cells to almost round basal cells (Fig. 2a, Supplementary Fig. 3). 

Cross-sections of bundles with characteristic high protein content represented muscle 

(Fig. 2a). Ducts, with a wall formed by a single layer of cells, could be found in crowed 

glands. Nerve tissue appeared as a large, lipid-rich fiber bundle with peripheral 

protein-rich fibrous connective tissue (peirneurium). We also identified features of a 

Watson tumor and a Mucoepidermoid Carcinoma sample (Supplementary Fig. 4), in 

addition to OSCC, to demonstrate the generalizability of SRS imaging for cancer 

histology. 

We further evaluated the protein to lipid ratio (PLR) of different tissue types. Because 

of the unique chemical selectivity of SRS imaging (Fig. 2a), the PLR histogram of 

different tissue reflected a distinct biomolecular signature in their cellular contents. In 

addition to molecular characterization, we chose texture-based morphology 

identification to validate the applicability of SMD-Seq in histology. We then described 

the texture of SRS images with the histogram of orientation gradient (HOG)
24

 features. 

The HOG features can characterize image texture, hence reflecting cellular packing 

from SRS image of tissue section. The HOG features of SRS images were compared 

to those of corresponding H&E staining images, followed by unsupervised clustering. 

The results revealed that each type of tissue harbored a unique pattern (Fig. 2b). It also 

implied that SRS images were comparable to H&E staining in revealing how cells 

were spatially organized, and were capable of supporting visual tissue identification 

based on histoarchitectural patterns. A non-trivial and more important demonstration 

was to separate normal epithelium from cancerous epithelium, which originated from 

the same tissue type. Their ROIs had similar PLRs, but harbored different histological 

features. We performed unsupervised clustering based on HOG features of 32 SRS 

images taken from the epithelium, including 16 cancer and 16 normal samples 
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(Supplementary Fig. 5). Two sets were clearly divided with only one exceptional 

cancer sample (Fig. 2c). This result showed that cancer and normal epithelium tissues 

displayed different histoarchitechtural patterns in SRS images. Furthermore, the 

correlation matrix of HOG features demonstrated a stronger correlation among normal 

epithelium compared with that of cancer samples, indicating that higher morphological 

heterogeneity might exist in cancer (Supplementary Fig. 6). 

The large scale morphological features were described by a stitched SRS image (Fig. 

2d). 80 fields of view (FOVs), with 0.65 × 0.65 mm
2
 each, were used to construct this 

large field of view (9 × 4 mm
2
). The cancerous part of the cryosection showed similar 

cellular mosaicism to the epithelium region. With these nondestructive stain-free SRS 

images, resembling H&E staining, tumor nests as small as 200 μm in diameter could be 

easily identified with conventional criteria such as hyperplasia, dysplasia, cancer 

nesting and keratin pearls (Fig. 2d).  Higher resolution images of each FOV 

confirmed that SRS images revealed histological information almost identical with 

H&E staining, except that in some cases H&E stained samples were distorted due to the 

experimental process (Fig. 2d, the medium and small images of epithelium regions). It 

was noteworthy that keratin pearls, the landmark feature of highly differentiated OSCC, 

could be clearly discerned in SRS images as onion-like histological patterns (asterisks 

in Fig. 2d). Furthermore, the strong signal from the red channel of SRS images 

indicated that these keratin pearls are protein-rich, reflecting the molecular nature of 

their structure. 

SRS-integrated in situ Laser Dissection 

To illustrate the performance of SRS-image based laser dissection, we applied H&E 

staining on the entire cryosections after micro-dissection, and compared them with the 

adjacent H&E stained reference sections (Supplementary Fig. 2). With SRS images 

and H&E images of micro-dissected cryosections, we successfully pinpointed 

dissected sites on the reference H&E cryosection (Fig 3a). For each ROI, an SRS 

image was acquired, followed by determination of the dissection path (Fig. 3b, curves). 

Besides the dissected ROI in each FOV, the rest of the section was conserved in the 

SRS image, H&E stained micro-dissected section, and the adjacent H&E stained 

reference section. In some cases, the dissected regions marked in the reference H&E 

images exhibited different morphological features than in the SRS images because of 

the complexity of tumor spatial distribution (Fig. 3b). Our in situ micro-dissection 

approach, using the same instrument without sample replacement, did not rely on 

reference sections to restore the ROI position, and hence provided high precision 

seconds after acquisition of SRS images. We measured the width of laser incision to be 

9 μm (Fig. 3c), and most cells in ROIs were intact. Although the size of cancer nests 

varied, a typical nest had an average diameter of 300 μm (Fig. 3d). We chose a 20×, NA 

0.75 objective because (1) it offered a FOV of 635 μm wide, which was sufficient to 

fully record the majority (over 90%) of a single cancer nest in a single image; (2) we 

needed to avoid using immersion fluid, which may cause RNA degradation, section 

distortion, and counteract thermal effect of the laser that dissected the specimen. The 

dissected region of single cancer nest, covered a mean area of 0.16 mm
2
 (Fig. 3f), and 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/121616doi: bioRxiv preprint first posted online Mar. 28, 2017; 

http://dx.doi.org/10.1101/121616


contained about 200 cells in average (Fig. 3e), with variations among different tissues 

types. The SRS imaging process followed by morphology characterization and in situ 

micro-dissection, in total took no more than 2 min. The dissected samples were 

carefully collected into centrifuge tubes, where cells were lysed immediately. The 

released DNA and RNA were then prepared for genomic and transcriptome analysis, 

separately. Rapid imaging, dissection, and cell lysis are critical to preserve the quality 

of nucleic acid for sequencing in low quantity samples. This is especially important 

for the RNA molecules which can degrade rapidly after sectioning. 

Transcriptome and Genome Sequencing and Analysis 

To demonstrate the capability of SMD-Seq, we collected 28 in situ micro-dissection 

samples for sequencing. 27 samples passed the quality check for further analysis, 

including 12 normal and 9 tumorous samples by RNA-Seq, 13 normal and 8 tumorous 

samples by DNA-Seq from four patients (Supplementary Table 1-3, Fig. 7). We 

validated the reproducibility of SMD-Seq of these samples by checking the Spearman 

correlation coefficients (r) of expressed genes (average r = 0.7) and reads count 

(average r = 0.7) between biological replicates of the same patients (Supplementary 

Fig. 8). We estimated the cellular purities of micro-dissected cancer nests and found 

that they were significantly higher than the head and neck squamous cell carcinoma 

samples collected by TCGA (P value = 0.0098, Supplementary Fig. 9). We observed 

that one of the dissected cancer samples, P4S1C, displayed high purity, while its 

adjacent H&E staining reference section was proved to be infiltrated with stromal cells 

(Supplementary Fig. 9), indicating the highly diverse spatial structure of small cancer 

lesions and the importance of in situ dissection and analysis. 

As H&E staining is the ‘gold standard’ of histological diagnosis, we compared RNA 

recovery between H&E stained and unstained cryosections by qPCR (Supplementary 

Fig. 10). For samples with the same thickness, the significant decrease of RNA quantity 

in H&E stained sections, as measured by Ct values, was not sufficient for sequencing 

library preparation. This proved the necessity of employing label-free histology to 

prevent RNA degradation, thus improving RNA-Seq measurements. We analyzed the 

whole transcriptome profiles of SMD-Seq samples, and ~9,000 genes were detected on 

average (FPKM > 0.1, Fig. 4A, Sup. Excel 1.1). Principal component analysis of 

transcriptome profiles showed that normal epithelium, gland, muscle and cancer 

samples clustered in distinct groups that corresponded with their identified morphology 

(Fig. 4b, Supplementary Fig. 11). Unsupervised hierarchical clustering was 

performed using 217 differently expressed genes (Fig. 4c, Supplementary Excel 1.2). 

Samples were classified by their morphologic characterization, with one exception of 

P4S2E. Clustering revealed four gene sets that distinguished the epithelium, cancer, 

gland, and muscle tissue. Gene ontology annotation terms of each set directly reflected 

the characteristics of the different tissue types and health conditions
25

(Supplementary 

Fig. 11). The four sets which corresponded to epithelium, cancer, gland, and muscle 

were enriched for genes related to epidermal development, immune response regulation, 

digestion/secretion, and the motion of myofibril and actin. While showing relatively 

consistent expression patterns in normal samples, gene expression levels varied among 
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cancer samples. For example, some genes related to the epithelial to mesenchymal 

transition (EMTs), KRT13, ELF3 and ESRP1
26,27

(Supplementary Fig. 12), showed 

higher expression levels in all of the normal epithelium samples when compared to 

cancer samples. In contrast, SERPINE2
28

 (Fig. 4d), AKR1B10(29,30) and UDP 

Glycosyltransferase 1A family (including UGT1A6, UGT1A7, UGT1A9 and 

UGT1A10, Supplementary Fig. 12) expressed at a lower level in all normal tissues but 

gained high expression levels in some cancer samples. This observation agreed with 

previously reported studies
28-30

. Specifically, KLK8, KRT1 and KRTDAP (Fig. 4d) 

only exhibited high expression levels in patient P3. KLK8 was found to be implicated 

in malignant progression of OSCC
31

, and KRT1 and KRTDAP were genes strongly 

related to the differentiation and maintenance of stratified epithelium. Correspondingly, 

the “keratin pearl” structure of P3 in the SRS image (Supplementary Fig. 12) also 

indicated the high differentiation level of its cancer nests. Genes like GSTP1 and 

KRT13 (Fig. 4d), were found to be expressed similarly among patients and showed 

significant differences when compared with normal tissues. GSTP1 was previously 

studied in head and neck cancers
32,33

, and its high expression level in tumor cells was 

reported to be associated with more aggressive cancer and poor patient survival. We 

performed immunofluorescence staining for GSTP1 to evaluate the level of protein 

expression (Supplementary Fig. 13) and confirmed the accumulation of GSTP1 in 

cancer nests. This observation correlates with the RNA-Seq results. Using SMD-Seq, 

we further found gene expression exhibited heterogeneity between different regions 

dissected from the same patient (Fig. 4d). The adjacent P4S1C and P4S2C exhibited 

similar gene expression feature, and at a distance from them, P4S3C highly expressed 

different groups of genes. The intra-tumor change of molecular evidence may indicate 

the progress of tumorigenesis.  

We then exploited the RNA-Seq data to query the whole transcriptome for de novo 

identification of gene fusion events, which have been recognized as driver mutations in 

neoplasia
34

. The displacement and recombination of genes, especially oncogenes, had 

become the focus of many cancer studies as they may provide potential therapeutic 

targets
35,36

. Since gene fusions are dependent on cellular context, we have applied 

fusion transcripts analyses on RNA-Seq data of those morphology characterized and 

laser dissected OSCC samples. Though some genes, like KRT6A (P1S2C, P3S5C), 

FAM102A (P1S3C, P3S5C, P4S2C), etc., were involved in gene fusion events across 

different patients, heterogeneity of fusion events was discovered among patients (Fig. 

4e, Supplementary Excel 1.3-1.8). A majority of these fusion events might be 

passenger events that came along with cancer development and thus their actual 

consequences remain unknown. However, we found that one of the fusion sets was 

recorded in TCGA (MYH9 and KRT14, from P2), and two of them included oncogenes 

AKT3 (AKT3 and LRRC45, from P3) and MAFB (MAFB and SAC3D1, from P3). To 

experimentally verify the fusion transcripts, fragments which harbored the joint 

junction of fusion genes were amplified and sequenced using Sanger sequencing 

(Supplementary Fig. 14, Table 2, and File1.1). The Sanger sequencing results 

confirmed the existence of the fusion junction between MYH9 (5’ fusion partner: exon 

20) and KRT14 (3’ fusion partner: exon 8), AKT3 (5’ fusion partner: UTR) and 
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LRRC45 (3’ fusion partner: intron), showing that our approach can be applied to 

discover recurrent fusion events. The heterogeneity of fusion events was also found 

among ROIs of the same patient (Supplementary Fig. 15). For example, more fusion 

genes were found in P4S3C, compared with distantly dissected P4S1C and P4S2C, 

indicating the instability of the genome during tumorigenesis. Moreover, we also 

observed the existence of an oncogene-involved fusion (RAB3D and MTMR14) in the 

previously mentioned sample P4S2E (Supplementary Fig. 14c), which appeared to be 

normal according to histopathological characterization. The joint fragment between 

RAB3D (5’ fusion partner: UTR) and MTMR14 (3’ fusion partner: UTR) were 

amplified and validated by Sanger sequencing as well (Supplementary Fig. 14d, 

File1.1). The whole transcriptome analysis proved that the well preserved RNA from 

SMD-Seq provided genetic alteration evidence underlying morphological features 

among different cancer nests, increasing the information dimension of tumor 

heterogeneity studies. We performed whole genome amplification and sequencing 

through degenerate oligonucleotide primed PCR (DOP-PCR) using half of the lysate of 

micro-dissected samples, and further analyzed the genomic alterations and 

heterogeneity at the genome level. Copy number variation (CNV) analysis 

demonstrated that various patterns of CNVs existed between cancer and normal 

samples, and also in different patients (Fig. 5a, Supplementary Fig. 16), indicating 

that OSCC is a highly complex tumor with significant genetic mosaicism and 

heterogeneity. A few commonly shared large-size ploidy shifts, such as the losses of 3p 

and 8p and the gains of 3q and 8q, which have been observed in most tumors
37,38

, were 

also observed in our OSCC samples. There were also various patient-specific CNVs, 

for example, chromosome 6 showed high instability in one patient’s (P2) cancer sample 

but not found in others (Supplementary Fig. 16, 17). Unsupervised clustering of the 

CNVs also proved that each patient possessed a unique CNV pattern (Fig. 5b, 

Supplementary Fig. 17)
39

. For the same patient, samples dissected from different 

locations displayed subtle discrepancy in copy number alterations (Fig. 5b). The CNV 

pattern of chromosome 1 in P1S1C and P1S3C were different from that of P1S4C, with 

an obvious gain of 1q in the first two ROIs (Supplementary Fig. 18). 

Among all the OSCC samples, 8 regions of recurrent copy number gain and 5 regions 

of recurrent copy number loss were identified (q < 0.25, Supplementary Fig. 19, 

Excel 1.9-2.0)
40

. Among these (copy number loss/gain or regions) 11q13.3, 8q24.3, 

11p15.4 and 11q24.2 co-localized with differently expressed genes in cancer samples. 

GSTP1 located within the recurrent focal amplification of 11q13.3
37

, which might 

imply that the high expression level of GSTP1 resulted from increased copy numbers. 

FAM83H was also co-localized with a focal amplification region, 8q24.3, and it 

specifically expressed at higher levels in patient P1. TP53AIP1 and PKP3 both 

expressed at a lower level in all the patients, and located in the regions of recurrent copy 

number loss 11q24.2 and 11p15.4, respectively. The expression level of GSTP1, 

FAM83H, TP53AIP1 and PKP3 were all reported to be involved in the development of 

cancer or had effects on patients’ survival rate
41-44

. Additionally, we found some CNVs 

overlapped with gene fusion sites (Fig. 5g). For example, fusion genes CTSB and 

PPP1CA co-localized with focal amplification regions 8p23.1 and 11q13.3, separately. 
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CTSB was proved to be related to cancer progression and metastasis
45,46

, and PPP1CA 

was reported to contribute to ras/p53-induced senescence
47

. Of 24 pairs of fusion genes 

we detected, 17 pairs (~71%) had at least one gene intersected with amplification and 

deletion regions (Supplementary Excel 2.1). The parallel observation of genomic 

rearrangement and gene expression fold change may illustrate that the instability of the 

cancer genome led to gene fusion events which were more likely to occur within 

amplification and deletion regions
48 

(Fig. 5g). 

Moreover, the mean expression level of genes within each genomic segment
49

 was 

compared with the copy number in the same region (Fig. 5c, d, e, Supplementary Fig. 

18, 20), and summarized across the whole genome (Fig. 5f, Supplementary Fig. 

21-22). The average gene expression levels showed positive correlation with the copy 

number within the same segment (Fig. 5f), demonstrating that our technique is able to 

simultaneously detect and study copy number alterations and transcript abundance 

variation within the same section. 

Discussion  

Current approaches for in situ histology and transcriptome information acquisition are 

predominantly limited by RNA degradation during the staining process. Although it 

has been reported that shortening the H&E staining time or introducing RNase 

inhibitors may help preserve RNA with thousands of cells
50

, obtaining both high 

quality of histological images and spatially correlated molecular analysis is still a 

challenge for the study of cancer heterogeneity at microscopic levels. SMD-Seq 

integrates stain-free nondestructive histological imaging with low-input genomic 

sequencing to provide a histoarchitecturally specific genome and transcriptome 

landscape in complex tissues. The intact cellular context was acquired through 

stimulated Raman scattering microscopy, yielding both histopathological features and 

biomolecular content for precise and accurate differentiation of small lesions from 

normal tissues. The nucleic acids, especially the RNA molecules, have been well 

preserved for further amplification and sequencing, opening a window to identification 

of various genomic alterations in complex samples with intrinsic genetic mosaicism. 

The correlative analysis between morphology and genome/transcriptome sequencing 

achieved in SMD-Seq is informative to tumorigenesis research. This analysis revealed 

a natural information flow: genomic alterations may be transcribed into expression 

alterations, and finally translated to observable functions that affect the phenotypes. 

With these complimentary data sets, characterization of cancer could be evaluated in a 

comprehensive manner, uncovering the hidden connections in tumorigenesis.  

During the entire process, from sample collection to sequencing library preparation, a 

few critical issues need to be taken into consideration in order to eliminate the severe 

degradation of vulnerable RNA molecules. Though higher resolution of SRS images 

can be achieved in our system, current imaging parameters were carefully considered 

for balancing between the image quality and preservation of genomic material for 

sequencing. While conventional H&E staining requires the processing of thin slices to 

avoid the stacking of cells, SRS imaging, allows us to image relatively thicker slices, 

which benefits RNA recovery. Hence we typically used 30-μm thick slices, in which a 
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majority of the cells are protected from sectioning injury and thus kept intact. This 

keeps most of the RNA molecules away from environmental ribonucleases, preventing 

loss of RNAs from broken cells. Our practice also concluded that this thickness did not 

affect the quality or robustness of laser dissection. Another crucial factor is the 

maintenance of sample temperature throughout the entire procedure. The tissue 

samples were kept at low temperature to further eliminate the RNA degradation. With 

all of the above considerations, the imaging and micro-dissection (3 ROIs in each slice) 

must be completed within about 10 min in order to ensure high-quality RNA-Seq data. 

In a few previously reported studies, phenotype-genotype integration has been shown 

to generate new insights in complex biosystems, using an algorithm developed to 

predict the spatial origin from transcriptome profile
11,12

. SMD-Seq, however, 

performed imaging and in situ micro-dissection, and thus directly matched the 

sequencing results with cells’ position. Furthermore, SRS imaging not only resembles 

H&E-based histological images but also outperforms other alternative approaches. For 

example, one may use an adjacent H&E section to assist the stain-free cryosection 

micro-dissection and sequencing (assuming the nucleic acids are well preserved) 

without SRS imaging. However, histopathological pattern discordance between the 

neighboring sections occurred in our observation. It could result from natural 

difference of cellular histoartchitechtural pattern in microscopic scale, or a distortion 

due to staining process. Both could lead to a mismatch between histology and 

molecular signature. These challenges inevitably create difficulty when studying 

tissues with fine scale mosaicism such as OSCC, and signify the importance of in situ 

analysis. In our approach, correlative analysis of morphology and sequence information 

could unveil previously unobserved trace of tumorigenesis. For example, the P4S2E 

sample demonstrated inconsistency between morphology and sequence information. In 

both the SRS image and its H&E reference, the sample was identified as normal 

epithelium. It could be seen in PCA analysis, however, that P4S2E clustered more 

closely with the cancer samples along the PC1 and PC3 axes (Fig. 4b). In addition, the 

genetic and transcriptomic features of this sample reflected a cancer-like pattern. 

Furthermore, genes previously reported to be significantly mutated in OSCC, like 

FAT1, PPP2R1A, PTEN, HRAS, and CREBBP28, were also found in P4S2E 

(Supplementary Fig. 23). This histology-genomic inconsistency could imply that 

cancer-like gene expression profiles may arise before of morphological signatures. 

Although SMD-Seq can preserve morphology and sequence information with high 

quality, this approach still bears limitations. First, SRS imaging in SMD-Seq is able to 

identify local tissue features, however, the resolution of air objective cannot guarantee 

visualization of subcellular structures, which hindered in depth image analysis. 

Increasing pixel density of image may reduce the noise level because of higher 

sampling rate (Supplementary Fig. 24), but prolonged exposure times lead to a higher 

chance of sample ablation during imaging (Supplementary Fig. 24). Second, the 

sequenced DNA and RNA molecules in this approach are from aliquots of one sample's 

lysate. In each aliquot, only DNA or RNA, can be sequenced. This small-bulk 

pool-and-split approach masks the single-cell-level heterogeneity within the sample 

and blurs the relationship between the genome and transcriptome. Additionally, the 
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simple operation of H&E staining is an advantage over SRS microscopy. The 

improvement and simplification of SRS imaging system should in principle broaden 

the clinical application range of SMD-Seq in the future.  

In summary, in this pilot study we combined stimulated Raman scattering microscopy 

with transcriptome and genome sequencing through in situ micro-dissection. We have 

shown that SMD-Seq can readily detect morphology matched transcriptional variation 

and chromosomal alteration, and it is capable of discovering gene fusion events 

underlying different histological features. This approach has potential to extend to 

single cell imaging and micro-dissection, and the analysis of epigenetic information. In 

combination with deep genome sequencing, the detection of SNVs can also be 

incorporated into current methods. SMD-Seq offers a new possibility in cancer 

research, with the integrated analysis of histology, transcriptome and genome, it will 

enable a more comprehensive understanding of the tumorigenesis process and 

diagnosis basis. 
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Materials and Methods 

Study design 

Our goal was to develop a new technique for obtaining high-quality histological images 

of OSCC while simultaneously profiling the transcriptomic and genomic variation that 

correlate with morphological features at the  microscopic level. We first validated that 

simulated Raman scattering images of stain-free OSCC tissue cryosections were 

comparable to widely used H&E images for histopathologic applications. We 

compared SRS images with H&E stained images from 4 different tissue types 

(epithelium, gland, muscle and nerve), and verified that SRS images accurately 

revealed features of OSCC . The texture characteristics extracted from normal samples 

(n=16) and lesion samples (n=16) were evaluated  in SRS images. At 3 different scales, 

the similarity between a stitched SRS image (FOVs, n=80) of one full slice and its 

corresponding H&E staining image was investigated. To prove the necessity of 

employing label-free histology to prevent RNA degradation, we evaluated the RNA 

recovery between H&E stained cryosections (n=24) and unstained cryosections (n=48). 

The SRS system was then optimized to perform fast, successive imaging and in situ 

micro-dissection (SMD-Seq). We applied SMD-Seq to 13 cryosections from four 

patients  who suffered various stages of OSCC at different ages and with different 

genders. All the biopsies were collected by protocols reviewed by and approved by the 

Ethics Committee of Peking University School and the Hospital of Stomatology 
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(PKUSSIRB-201418116).  We collected 28 in situ micro-dissection samples  for 

sequencing, and 27 samples passed the quality check for further analysis, including 12 

normal (5 muscle; 2 gland; 5 epithelium) and 9 cancer samples by RNA-Seq, 13 normal 

(muscle, n=5; gland, n=2; epithelium, n=6) and 8 cancer samples by DNA-Seq. 

Bioinformatics analysis of the transcriptome and genome demonstrated the intra- and 

inter- tumor heterogeneity, and the correlative analysis between morphology and 

genome/transcriptome sequencing in the samples  indicated intrinsic genetic 

mosaicism. 

Stimulated Raman scattering (SRS) microscope  

The home-built SRS system used a pump laser integrated optical parametric oscillator 

(picoEmerald, APE, Germany). It provided two spatially and temporally overlapped 

pulse trains, with the synchronized repetition rate of 80 MHz. One beam, fixed at 1064 

nm, was used as the Stokes light. The other beam, tunable from 780 to 990 nm, served 

as the pump light. The intensity of the Stokes beam was modulated at 20.2 MHz by a 

resonant electro-optical modulator (EOM). The overlapped lights were directed into an 

inverted multi-photon scanning microscope (FV1000, Olympus, Japan). The collinear 

laser beams were focused into the sample by a 20× objective (UPlanSAPO, NA 0.75, 

Olympus, Japan). Transmitted light was collected by a condenser (NA 0.9, Olympus, 

Japan). After filtering out the Stokes beam, the pump beam was directed onto a large 

area photo diode (FDS1010, Thorlabs, USA). The voltage from photo diode was sent 

into lock-in amplifier (HF2LI, Zurich Instruments, Switzerland) to extract the SRS 

signal. Image was reconstructed through software provided by manufacture 

(FV10ASW, Olympus, Japan). 

SRS imaging and laser micro-dissection in situ 

Each slide was surveyed with SRS microscopy in two channels immediately after 

sectioning. The two Raman bands are 2850 and 2950 cm
-1

, representing CH2 symmetric 

vibration and CH3 vibration, respectively. In situ micro-dissection was performed right 

after image acquisition. Details and parameters were described and discussed in 

Supplementary Materials and Methods. 

Image analysis 

Dual-color SRS images were analyzed with Matlab (Mathwork, USA) and R, as 

describe in Supplementary Materials and Methods. 

Transcriptome and genome sequencing 

For each tissue section, we selected at least one dissected region of tumor, and two 

dissected areas of similar size from normal tissues, one of them from the epithelium 

(the origin of this tumorigenesis) and the other from gland or muscle. The dissected 

samples were put into lysis buffer
51

 separately and immediately centrifuged at 13000 

rpm for 30s. After lysis, each sample was equally divided into two aliquots for 

RNA-Seq and genomic DNA sequencing, respectively. The protocol of RNA-Seq was 

adapted from the pipeline of single-cell transcriptome analysis
51

. In brief, mRNA was 

reverse transcribed into first strand cDNA with polyT primer which has an anchor 
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sequence. After other used primers were digested, polyA was added to the 3' end of 

cDNA and second strand cDNA was formed and amplified with polyT primer with 

another anchor sequence by PCR. We employed degenerate oligonucleotide primed 

PCR (DOP-PCR) for amplifying the whole genome of each lysed tissue sample by the 

GenomePlex Single Cell Whole Genome Amplification Kit (WAG4-50RXN, 

Sigma-Aldrich, USA). For each sample, 50 ng of amplified genomic DNA and cDNA 

were used as the start amount of libraries preparation, separately. The pair-end 

sequencing libraries with ~300 bp insert size were constructed following the 

instructions of NEBNext Ultra DNA Library Prep Kit for Illumina (E7370, New 

England Biolabs, USA). Illumina HiSeq 2500 systems were used for sequencing. 

Sequencing data analysis 

Adaptor contamination and low-quality reads (phred quality< 20) were discarded from 

the raw data. Only samples with coefficient of variation (CV) of reads count per 1M 

bin<0.25 (genomic DNA) and gene number more than 6000 (FPKM>0.1, RNA) were 

kept for analysis. For RNA-Seq data, TopHat (v2.0.10) were used for sequencing 

alignment. Reference genome assembly hg19 and gene annotation files were 

downloaded from UCSC Genome Browser. FPKM values used for analyses were 

generated by Cufflinks (v2.1.1), and Cuffdiff (v2.2.1) was used for gene expression 

levels comparison. Significantly different expressed genes between muscle, gland, 

epithelium and cancer were selected under the criteria that p value < 0.05 and |log2 

(fold change)| >1. Gene functional annotation was performed by The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) v6.717
25

. The purity of 

tumor samples were estimated by ESTMATE
46

 with gene expression data. Gene fusion 

analysis were carried out by FusionCatcher (v0.99.4a)
53

 with four mapping tools 

(Bowtie, Bowtie2, BLAT, STAR). Matched normal samples were used for each patient 

to exclude the fusion genes that are also found in normal samples. Under following 

situations the fusion were discarded:(1) both fusion genes are mutual paralogs;(2) one 

or both of the fusion genes were pseudogene;(3) reported only by one mapping tool or 

reported by 2 mapping tools only once;(4) no known genes existed in between the 

fusion genes;(5) the distance between both genes were less than 100 kbp. Under this 

criteria, 24 fusion genes were discovered with more than 10 paired reads spanning two 

different genes sequences. The circular diagram of fusion gene was generated by 

CIRCOS (v0.67-7)
54

. RNA-Seq data was used for variant calling by GATK (v3.4-0) 

according to GATK Best Practices recommendations
55

. We performed duplicate 

removal, SplitNCigarReads, base quality score recalibration before SNP calling, and 

filtered out SNPs by Fisher Strand values (FS>30.0), Qual By Depth values (QD<2.0) 

and sequencing depth passing the quality filter (DP<10). Annotation of SNPs was 

performed by SnpEff (v4.0)
56

. Significantly mutated genes in HNSCC (Head and Neck 

Squamous Cell Carcinoma) were inferred from COSMIC (Catalogue of Somatic 

Mutations in Cancer) and a comprehensive previous study
57

. Spearman correlation 

coefficient was computed between tissue samples by function 'cor' in R. The 

unsupervised hierarchical clustering was performed by the function 'pheatmap' of 

package 'pheatmap' in R. and the method of measuring the distance in clustering 

columns was 'manhattan'. 3D PCA plot was generated by R package 'scatterplot3d'. 
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The sequencing depth of DNA-Seq was ~0.1×. Genomic DNA sequencing reads were 

mapped to reference genome by bowtie2 (v2.2.3)
58

. After duplication removal of 

mappable reads, the counts of aligned reads were calculated in each 1M bin along the 

genome (Figure 5A, C, D, E). For each bin, the read count of each tumor sample was 

normalized by sequencing depth and the median read count of all normal tissue samples, 

and the generated copy number went through segmentation by Circular Binary 

Segmentation
59

 (the significance level was set as 0.05). The mean gene expression 

values of cancer samples within each segment were also calculated and normalized by 

mean expression values of normal samples which had corresponding qualified 

(CV<0.25) gDNA reads (Figure 5C, D, E). Function “pheatmap” in R was adopted for 

CNVs clustering (Figure 5B). GISTIC 2.030 was adopted to analyze the significantly 

reoccurring focal alterations for the gDNA segmented data. 
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Fig. 1. Illustration of SMD-Seq. Snap-frozen tissues were dissected into 30 μm 

sections and immediately imaged with SRS microscopy. The SRS 

images constructed by deconvolution and recombination processes 

reflected the features of imaged tissue. After regions of interest were 

identified on the SRS images, the dissection path was determined and 

samples were dissected in situ by laser. Dissected samples were then 

lysed and aliquoted for following DNA and RNA sequencing.  
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Fig. 2. SRS images of different tissue regions on-slide. (A) SRS images (top row) of different oral tissues, with corresponding H&E 

images (middle row), and protein to lipid content ratio (PLR, bottom row). The histograms showed the distribution of PLR. (B) 

Unsupervised clustering of different tissue types’ HOG features in both SRS and H&E images. (C) Unsupervised clustering of 

HOG features extracted from 16 oral cancer (C1-C16) and 16 epithelium samples (E1-E16). (D) Stitched SRS image of one full 

slice and its corresponding H&E staining image. SRS and H&E images appeared in high similarity at different scales. In middle 

and bottom rows, images in the left column were oral cancer, the right column represented epithelium. Asterisks were labeled 

on 'keratinized pearls', a specific structure in OSCC. Scale bars are 200 μm.
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Fig. 3. Micro-dissections of tissue slices. (A) A single 30 μm cryo-section 

stained with H&E after SRS imaging and micro-dissection. Red, orange 

and white squares highlighted the dissected cancer (C1), epithelium (E1 

and E2) and muscle (M1) regions. (B) SRS images before dissection 

(top row), H&E staining images after dissection (middle row), and H&E 

references (bottom row). White and black curves in SRS and reference 

images highlighted the dissected regions from the cryo-section shown in 

(A). The dissection regions were identified by a pathologist based on 

SRS images. (C) The diameter distribution of cancer nests. Gray bar 

showed the average size, red bar showed the width of 20× objective's 

field of view. (D) The linewidth of dissection path. Part of the path 

(orange box) is selected to measure linewidth of incision. (E) Cell 

number and (F) area in each dissected tissue. 
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Fig. 4. Transcriptome analysis of laser dissected gland (G, light blue), muscle 

(M, blue), epithelium (E, orange) and cancer tissues (C, red). (A) 

Detected gene number (FPKM > 0.1) of 21 samples dissected from four 

patients’ slices. (B) Principal Component Analysis (PCA) results of 

expressed genes. (C) Unsupervised hierarchical clustering by 217 

differently expressed genes. Both samples and genes were clustered 

into four groups. (D) Details of unsupervised hierarchical clustering of 

differently expressed genes in cancer samples with at least two 

dissected slices. Highly expressed genes of patient P1 (top), P3 (middle) 

and P4 (bottom) and their corresponded SRS morphology images were 

shown. The H&E stained cryo-section of P4 was demonstrated, and the 

locations and dissection paths of P4S1C (red), P4S2C (green) and 

P4S3C (orange) were labelled. (E) Gene expression levels of GSTP1, 

KRT13, KLK8 and SERPINE2 between normal epithelium (E, orange) 

and cancerous epithelium (C, red). (F) Detected gene fusion events of 

four patients. Orange lines indicated fusion genes with at least 10 span 

pair reads (Online Methods). The green and purple lines represented 

oncogenes involved gene fusions.  
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Fig. 5. Genomic and transcriptomic analysis of laser dissected tissue samples. (A) Raw reads count across the whole genome of two 

paired cancer-normal tissues dissected from the same slice. Chromosome numbers were labeled at the bottom. (B) 

Unsupervised clustering of normalized reads count of all the dissected cancer samples. (C, D) Top panels demonstrated the 

normalized read count (grey dots) and copy numbers (red lines) identified by CBS algorithm in chromosome 2 and 11 of 

sample P1S1C and P1S3C, respectively. Mean expression levels within the same segment were shown in black lines in the 

bottom panel. (E) Averaged read counts of all the cancer samples (top) and their corresponding gene expression values 

(bottom) of chromosome 18. Genome and transcriptome variations of other chromosomes and samples were shown in Fig. 

S16, 18-19. (F) Averaged gene expression fold changes were computed per 1M bin across the whole genome, and plotted 

against copy numbers. (G) The distribution of CNV and fusion genes across the genome of all the cancer samples. Orange and 

blue bars indicated the copy number gains and loss, respectively. Orange lines in the inner circle indicated fusion genes with at 

least 10 span pair reads, and the green and purple lines represented oncogenes involved gene fusions. The position of fusion 

events (magenta) and CNVs (light blue) of all the cancer samples were shown in the 2 outmost circles. 
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