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ABSTRACT: We develop a novel single-cell-based platform
through digital counting of amplified genomic DNA fragments,
named multifraction amplification (mfA), to detect the copy
number variations (CNVs) in a single cell. Amplification is
required to acquire genomic information from a single cell, while
introducing unavoidable bias. Unlike prevalent methods that
directly infer CNV profiles from the pattern of sequencing depth,
our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before
amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge
maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification
and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through
multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced;
therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region
free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.
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■ INTRODUCTION
The genomic copy number variation (CNV) is a type of
duplication or deletion event that affects a considerable number
of bases of DNA.1−3 The size of CNV varies from a few bases
to even a complete chromosome.4−6 CNV plays an important
role in generating necessary variations in the population as well
as disease phenotypes.2,7,8 Most reported studies focused on
shared CNVs or average CNV patterns among a bulk amount
of cells.4,6,9 However, recent studies revealed that each cell may
have harbored its characteristic CNV profile, and such profiles
might help reconstruct the full spectrum of the cellular
complexity and the evolutionary connections between
cells.10−12 Highly accurate and precise identification of CNVs
in single cells is extremely important and necessary to
fundamental biology studies or medical researches since many
CNVs are associated with critical biofunctions and dis-
eases.7,8,13−16 Large fragment CNVs are easy to detect through
conventional molecular biology methods,17,18 microarray-based
analyses,19−23 or karyotyping.7,22 However, identifying the
small-size CNVs from a single cell with high confidence is
challenging, thus becoming one of the highly demanded
features in single-cell whole genome sequencing.10,14

Various approaches have been developed to obtain genomic
information in single cells using next-generation sequencing
platforms.9,10 The key to these methods is to amplify the
genomic DNA of a single cell with high coverage breadth, low
replication error rate, and low amplification bias. We have
compared a few commonly practiced methods, including

degenerate oligonucleotide-primed PCR (DOP-PCR),24 multi-
ple displacement amplification (MDA),25,26 multiple annealing
and looping-based amplification cycles (MALBAC),27,28 and
our microfluidic-based emulsion amplification (eWGA),29 and
found that eWGA shows a superb performance in balancing the
identification capability between CNVs and single nucleotide
variations (SNVs). The limited identification resolution of
CNV for eWGA is around 0.25−1 Mb, which may cause false
negative calling of small CNVs. In previously reported
methods, the CNV pattern is directly reflected by the
sequencing depth, i.e., the number of reads that covered the
certain positions in the genome, and the actual values of the
copy numbers can be deduced from ratiometric analysis. Hence
the CNV identification is highly affected by the amplification
bias.10

In this article, we present a new method to detect small
CNVs in single cells through a multifraction amplification
(mfA) approach coupled with high-throughput sequencing.
The key concept of mfA is to avoid the bias-sensitive
ratiometric assessment and simply count the number of
fractions that contain an amplified product of specific fragment.
This mfA approach is independent of amplification bias, making
this strategy universally applicable to other single-cell WGA
methods.
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■ RESULTS AND DISCUSSION
Experimental Process. This strategic design can be applied

to any amplification chemistry, but in this work we chose MDA
since it has four major advantages to amplify the single cell’s
whole genome: (a) the reaction is isothermal, which is probably
the most favorable protocol for experimental operators; (b)
amplification is highly efficient, producing microgram-level
amplified product which is sufficient for all available
experimental protocols for sequencing library construction;
(c) amplification is highly accurate with overall error rate
around 10−5 owing to the high fidelity of phi 29 polymerase;
(d) amplification has high coverage breadth across the whole
genome, typically 70−80% for a normal diploid human cell.10

The mfA with MDA method was named as mfMDA, and the
general experimental design of mfMDA was schematically
illustrated in Figure 1. Each single cell was manually picked and

lysed to release DNA, which was denatured into single strands,
and then was separated into multiple (n = 7−20, according to
the maximum copy number of the single cell) fractions, each of
which was amplified separately in a small-volume reaction tube.
The MDA product of each fraction was uniquely indexed
through sequencing library construction and then sequenced
using an Illumina platform.
After sequencing, we analyzed the sequencing reads of all the

fractions, and for each fraction we mapped the sequenced
fragments to the reference genome. For a genomic region that
contains more than one copy of DNA, we should have large
chances to observe the signal in more than one fraction
(reaction tubes). A straightforward way to deduce the possible
copy number of a specific location of the genome is to count
the number of fractions in which this locus has been sequenced.
However, simply counting the positive tubes may under-
estimate the real copy numbers since the fraction number is not
infinite; hence, there is a certain probability that multiple copies
of a single genomic locus coparticipate in the same tube. The
probability of such a distribution can be accurately predicted by
Poisson statistics,30,31 similar to the consideration of digital
PCR but not identical. In digital PCR applications, we
commonly desire a large dynamic range for highly accurate
detecting target DNA or RNA fragments from a few copies to a

few thousand copies.32−35 However, single-cell CNV studies
may only require a small number of compartmentations since
genomic DNA copy number is typically no more than 10.

Amplification Probability of ssDNA Fragments. Single-
cell whole genome amplification started with cell lysis and DNA
denature, providing fragmentized single-strand DNA (ssDNA)
as starting material. It is important to point out that unlike
digital PCR WGA does not guarantee successful amplification
of every DNA fragment in a reaction system. To experimentally
obtain the average probability of an ssDNA fragment that can
be amplified by MDA reaction, we specifically used two human
haploid single cells (sperms) as starting material in a single
tube. The exome was enriched after amplification and library
preparation and then sequenced and analyzed. The result (see
Supporting Information, Section 2) indicates that the
probability of successful amplification of an ssDNA fragment
is about 0.4. Thus, for a haploid cell, the theoretical maximum
coverage breadth of mapped reads across the whole genome is
1 − (1 − 0.4)2 = 0.64, and for diploid cells with 4 single-strand
copies, the coverage limit is 1 − (1 − 0.4)4 = 0.87. Similarly, the
limit is 0.95 for a triploid cell and 0.98 for tetraploid.

Theoretical Simulation. A fragment from a region with a
larger copy number will have more ssDNA copies. In the
mfMDA approach, these ssDNA copies are separated into
different fractions. More original ssDNA copies mean more
fractions may contain reads mapped to this fragment after
sequencing. If a fragment is detected in n fractions, we define
that this fragment has a positive value of n (PV = n). If we
consider all the fragments in a given region, each fragment may
have a specific PV (PV = 0, 1, 2, ..., nfraction). For each specific
region, we can calculate the frequency of different PV.
We performed a simulation to quantitatively assess the PV

frequency distribution of ssDNA fragments, assuming each of
which has average amplification probability of 0.4, and each
region contains 100 fragments (Figure 2). Different original

copy number will lead to different PV frequency distributions.
For example, CN = 1 exhibits a high frequency for PV = 0.
While CN = 2 and CN = 3 show quite similar frequency for PV
= 2, they have quite different frequencies for PV = 1 and PV =
3. This suggests that after we obtain the experimental PV data
from mfMDA we can determine the copy number of each
region through a maximum likelihood estimation according to
the PV frequency distribution statistics. For each region, we
performed the maximum likelihood estimation calculation for

Figure 1. Experimental procedure of multifraction amplification
(mfA). An intact single cell is lysed, and the DNA fragments are
denatured to single-strand fragments. Then the lysate is mixed with an
amplification reaction reagent and is equally dispensed into n (n = 7−
20) reaction microtubes. The different single-stranded DNA fragments
for the same DNA sequence will be likely separated into different
tubes. The amplification products from each tube are purified and
sequenced separately. For any target genomic sequence, the number of
tubes that performs positive signals of this locus is defined as positive
value (PV), from which the copy number can be deduced.

Figure 2. Probability distribution of positive values (PVs) for different
fragments with different copy number (CN). Considering the
proportion of fragments with PV of 0, it is easy to distinguish CN =
1 from CN > 1 cases. Considering the proportion of PV of 0, 1, and 3,
it is possible to distinguish CN = 2 and CN = 3 cases, and considering
the proportion of PV of 1, 2, and 4, it can be better to distinguish CN
= 3 and CN = 4 cases.
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all possible copy numbers. We then obtained the likelihood of
each possible copy number by calculating the product of
probability of all the PV values in the region. The copy number
containing the maximum product of probability was then
assigned as the copy number of the region.
Amplification of Single HT-29 Cells. We then tested

mfMDA for single human cells with intrinsic CNV patterns. We
used the HT-29 cell line (a human colon cancer cell) as the
model system. HT-29, a cell line with average copy number
around three,36 has been thoroughly studied by other single-cell
WGA approaches, making it a good candidate for assessing
technical performance of our new method. We applied 15
fractions in this mfMDA experiment, and the sequencing
libraries were constructed using the Illumina Nextera kit and
sequenced by Hiseq 2500 sequencer. The fraction number
should be larger than the number of ssDNA strands, or there
will be a chance that a target sequence appears in all the
fractions. We will not be able to tell if this phenomenon is due
to the contamination. Therefore, we choose 2 × (CNmax) + 1 as
the fraction number. A larger fraction number is acceptable, but
it will make the experiment and library preparation more
complicated. Fifteen fractions for the HT-29 cell will be able to
handle a maximum CN of 7, which we believe is enough for the
HT-29 cell with average CN of about 3. In contrast, in our
previous technical verification experiments using single sperms,
each of which has only two ssDNAs after denature, a fraction
number of 3 will be enough. However, in the experiment we
need to make sure that we get only one sperm cell but not two.
In addition we need to make sure the experiment is not
contaminated by diploid cells. Hence the experiment needs to
be designed to distinguish a copy number of 2, and we choose
at least 5 fractions for single sperm experiments. The
sequencing reads were mapped to human genome reference
hg19 using bowtie2.37 Duplicates were removed by samtools.38

The insert size was 200−300 bp during the library construction,
and the read length is 2 × 150 bp using paired-end sequencing.
To make the best use of the data, we choose 200 bp as the size
of a bin. The whole genome was divided into 200-bp bins, and
each bin was considered as a fragment. Contamination was also
removed during processing. For each fraction we calculated the
sequencing depth of each bin and obtained the PV of all bins.
The whole genome is segmented into regions. In a given
region, we calculated the frequency of different PVs, which
were the observed values in our maximum likelihood
estimation.
Determining the copy numbers from PV frequency requires

the probability density function, which can be generated from
simulations based on other parallel mfMDA experiments or,
preferably, from the same experiment based on a landscape of
the CNV distribution (Figure 3). Such a landscape can be easily
depicted from bulk sequencing, but for single cell sequencing,
especially for those systems in which intercellular heterogeneity
exists, we have to generate an approximated profile from the
sum of read depth of all fractions in an mfMDA experiment. It
is also critical to determine a proper block size to provide such
a low-resolution CNV landscape. If the block size is too small,
the small bias-related variations will result in extra noise, while
if the block size is too large, the resolution of the landscape will
be too low. After analyzing the relationship between the
normalized coefficient of variance (CV) of the read depth
inside the block and the block size (Figure S3), in our
experiment we chose the block size of 0.7 Mb. When the bin
size is small, the random noise of MDA affects the accuracy of

CNV segmentation. The noise gets smaller as the bin size
grows. However, when the bin size is too large, regions with
different copy number may be merged into a single bin and
then make CNV calling inaccurate, leading to an increase of
CV. We find that the CV result has a local minimal value when
the bin size is around 0.7 M. The total read depth was binning
to the block size and processed using DNACopy.39 The CNV
regions with a size larger than 20 Mb were picked to generate
the probability density function (Table S4).
A naiv̈e approach is to segment whole genome into regions

with equal size and apply maximum likelihood estimation to all
the regions to get the most probable copy numbers. A possible
problem of this method is that it will be influenced significantly
by contamination or amplification noise. Higher resolution
requires smaller size of the regions, but smaller regions are
more susceptible to noise. In addition, the number of fragments
in a single region is limited in small-size regions; hence, the
proportion distribution of the fragments of a certain PV
becomes more dispersed, leading to an increase in discrim-
ination difficulty (Figure S4).
We then applied a segment-merge algorithm before

maximum likelihood estimation to enable the detectability of
smaller CNVs. This algorithm uses variable size of regions
which contain different numbers of fragments. The data were

Figure 3. CNV identification through maximum likelihood estimation.
The whole genome is divided into 200-bp fragments, and for each
fragment the PV is counted. Then the sequencing data are merged
together to call a low-resolution CNV landscape of the genome. A
probability density is obtained by calculating the probability
distribution of each PV for bins sampled across low-resolution CNV
regions. At the same time, the whole genome is divided into small bins
(>200 bp), and we can get the proportion of different PV for each bin.
With the maximum likelihood estimation, a high-resolution CNV
landscape of the genome can be obtained.
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segmented into small regions, and the counts of PV values for
each region were obtained. These series of counts, containing
information on genome-wide copy number changes, were
segmented to form change points that defined the boundaries
between genome segments with different copy numbers. We
can simply use these change points to produce the genomic
CNV pattern; however, these change points contained many
false positives which might be further filtered. During the
filtering process, we combined the most significant change
points in the series. The small regions were merged into large
regions with variable sizes divided by the filtered change points.
These regions were then processed using the maximum
likelihood method to determine their copy numbers.
We found that this segment-merge algorithm could highly

reproduce the bulk cell CNV results compared to conventional
MDA (Figure 4) and achieved higher resolution to identify
CNVs from single-cell WGA product through mfMDA (Figure
5A). The result showed that noise across all the regions was
much lower than the raw read depth of MDA, with spikes and

channels removed. With high noise, CNV was not accurately
detected for conventional single-tube MDA but clearly revealed
through the mfMDA approach. Particularly, some small CNVs,
at the size smaller than 500 kb, which have been difficult to
identify in previous studies, can be successfully identified by
mfMDA. For example, bulk sequencing showed that in
chromosome 3 there was a 150-kb copy number loss. This 2-
to-1 copy number loss can be accurately detected by mfMDA
but obscured by the bias-induced noise in conventional MDA
(Figure 5B). Another similar example was a 100-kb copy
number deletion in chromosome 9 (Figure 5C).
In addition to facilitating the accurate assessment of small

CNVs for single-cell sequencing, this mfMDA approach also
provides a unique advantage to identify the high confidence
regions that are free of allelic drop-out (ADO) in the single-cell
sequencing data. None of the previously developed single-cell
amplification and sequencing methods can provide such
capability. Despite its high coverage and accuracy, MDA suffers
from a notoriously high rate of allelic drop out (ADO) due to

Figure 4. Consistency of CNV identification between single-cell WGA methods and bulk sequencing data. (A) The correlation between bulk read
depth and the MDA read depth. The low correlation implies that conventional single cell MDA results cannot accurately present the CNV. (B) The
correlation between bulk read depth and the integerized read depth of single-cell MDA result. The correlation is still low. (C) The correlation
between bulk read depth and the copy number identified through mfMDA approach.

Figure 5. CNV results of HT-29 cells. (A) The genome-wide CNV pattern of HT-29 cells. Gray: CNV pattern deduced from sequencing depth of
bulk sample. Blue: CNV pattern reflected by conventional MDA of single HT-29 cell. Orange: CNV pattern reflected by the single-cell mfMDA
approach. (B) The CNV patterns of chromosome 3. (C),(D) The detailed CNV patterns.
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the random amplification nature, which significantly limited the
application of MDA. However, with our mfMDA data, we can
determine the ADO-free region of single-cell WGA result. We
analyzed the PV of each segment in the diploid region and
screened out those regions that have PV larger than 2. In these
regions, at least three ssDNA fragments of the same genomic
location have been successfully captured in mfMDA, ensuring
that both alleles have been sequenced. Since every single cell
can only be amplified once, it is important to know which
region is ADO-free, and only in such regions we can
confidently identify and differentiate homozygous and hetero-
zygous mutations. We have analyzed all the sequencing data
from mfMDA and identified the 360 Mb (12% of the genome)
ADO-free region from the WGA sequencing data of a single
HT-29 cell. The experimental result showed that the minor
allele frequency is obviously higher than the other uncertain
region (Figure 6A).
It is reasonable to couple this fractionalization strategy with

other single-cell amplification chemistries besides MDA, using
the same algorithm to deduce the CNV pattern. However,
unlike high-coverage and random-bias MDA, some of those
amplification chemistries have limited coverage breadth (Figure
6B)24 and will cause inaccurate assessment of the CNV when
PV counting is applied, while some of the others exhibit
sequence-dependent bias20,28 which need normalization before
to obtain the probability density matrix. Furthermore, MDA is
an isothermal process, making the whole experimental process
convenient to operate. Fractionalization is technically easy to be
realized by either robotic automation or by microfluidic devices
if needed and will facilitate the robustness of this approach by
reducing the possible errors during experimental operations. In
addition, fractionalization is technically easy to be realized by
either robotic automation or by microfluidic devices if needed.
Multiplex sequencing can be accomplished using dual-indexing
library preparation or adding individual barcodes to each
sample. With these techniques, we believe tens to hundreds of
cells can be handled in parallel during the experimental part.
For data analysis, the number of cells being analyzed in parallel
is only limited by computing capabilities and resources. Usually
four to eight cells can be analyzed in parallel with a mainstream
personal computer.

■ CONCLUSION
In summary, we have developed a new approach to identify
single-cell copy number variations based on multifraction
amplification (mfA) and sequencing of the single-cell whole
genome. This mfA strategy is fundamentally different from

previously reported methods that deduced copy number from
sequencing depth. By examining each fraction if a specific
fragment has been sequenced, sequencing-depth-based CNV
identification can be transformed into digital counting and thus
become insensitive to the amplification bias. Since not every
DNA fragment can be successfully amplified, we then applied
the segment-merge maximum likelihood algorithm to calculate
the copy number, taking the amplification probability into
consideration. We have demonstrated the method with MDA.
The new method has lower noise, facilitating the identification
of single-cell CNVs with resolution at 100 kb. Combined with
the high fidelity of MDA, the new method allows for further
analysis of single nucleotide variations. With our method we
could also determine the genomic region without allelic drop-
out, which is impossible for traditional MDA or other single-cell
amplification methods.
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I. Materials and Methods 

Cells and reagents 

The HT-29 cells, expanded from a monoclone, were kindly provided by Professor Wensheng 

Wei in the School of Life Sciences at Peking University. Semen sample was collected from 

50-year-old Asian male volunteers. Random primers (N6, 33µg dissolved in 80µL water), 

bovine serum albumin (BSA, 20mg/mL) and deoxyribonucleoside triphosphate (dNTP, 

solution, 10mM each) were purchased from New England Biolabs China. High purity water 

was purchased from Ambion. Protease comes from Qiagen. The remaining biochemical 

reagents used in the amplification reaction were purchased from Sigma Aldrich.  

Basis for determining the fraction number 

The fraction number should be larger than the number of single-strand DNA, or there will be 

a chance that a target sequence appears in all the fractions. We will not be able to tell it from 

contamination. So we choose 2 × (maximum CNV number) + 1 as the fraction number. A 

larger fraction number is OK but it will make the experiment and library preparation more 

complicated. The average copy number of HT-29 cell is 3, 15 fractions for HT-29 cell will be 

able to handle a maximum CNV number of 7, which we think is enough for HT-29 cell. For 

a single sperm, which has only 2 single-strand DNA, a fraction number of 3 is enough. 

However, in the experiment we need to make sure that we have get only one sperm cell but 

not two. Also we need to make sure the experiment is not contaminated by diploid cells. So 

the experiment is designed to be distinguish a copy number of 2, which means 4 

single-strand DNA. So we choose at least 5 fractions for single sperm. 

HT-29 single cell multiple fractions MDA 

HT-29 cells for MDA were washed in PBS (Invitrogen), and then dispersed into single cell 

suspension by gently pipetting. Each  orphological good single cell was picked by mouth 

pipette into 1µL cell lysis buffer (30 mM Tris-HCl, 10 mM KCl, 5 mM EDTA, 0.5% 

Triton-X100, and 2 mg/mL protease, pH = 8.0) followed by incubation at 50 °C for 180 min. 

Then, the protease was thermally inactivated by raising the temperature to 70°C for 30 

minutes. �fter that, 1µL of Phi29 polymerase reaction buffer (50 mM Tris-HCl, 10 mM 
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MgCl2, 10mM (NH4)2SO4, 4 mM DTT, pH 7.5), 5 µL of N6 random primer and high purity 

water were added to the lysis mix. The tube was heated to 95 °C for 5 min to denature and 

fragment double-strand gDNA, then quickly chilled on ice for at least 5 min for keeping 

DNA as single-strand state and annealing N6 primers. Then we added 0.8 µL of Phi29 

polymerase, 1.0 µL of dNTP mix, and 0.2 µL of BSA to the mix on ice. Immediately, the 

total reaction solution of 10 µL was equally divided into 15 tubes at 4 °C, and MDA 

reactions were carried out at 30 °C. After 10-hour amplification, reactions were terminated at 

65°C for 10 min. 

Sperm single cell multiple fractions MDA 

Sperm single cell multiple fractions MDA were carried out under the same procedure as 

HT-29 single cell above except for two major differences. One was cell lysis buffer and time. 

Each morphological good individual spermatozoa was picked using mouth pipette into 0.5 

µL of cell lysis buffer (30 mM Tris-HCl, 10 mM KCl, 5m M EDTA, 0.5% Triton-X100, 40 

mM DTT and 2 mg/mL protease, pH=8.0) followed by incubation at 50 ° C for 720 minutes. 

The other was the number of portioning and amplification time. The total 10 µL reaction mix 

was equally divided into 5-7 tubes quickly at 4 °C, and incubated at 30 °C for 12 hours. 

Purification & Quality control  

Each tube of MDA product was purified separately using DNA Clean-up & Concentration 

kit (Zymo Research) after addition of 50 µL water to the reaction mix. Purified DNA was 

firstly quantified by Qubit dsDNA HS Assay (Invitrogen). Then, same amount of DNA from 

each tube belonging to same single cell were pooled together as qPCR template to examine 

the amplification bias. In total, 5 primers which targeted to different chromosomes were 

applied for quantification with PCR SsoAdvanced SYBR Green Supermix (Biorad) on 

Illumina Eco thermocycler. Amplification is considered successful when at least 3 primers 

can result in correct products (confirmed by melting curve analysis) and Ct value lower than 

30. These single cell products were chosen for next step of library preparation.  

Library preparation 

For bulk cells, 1µg gDNA was used to construct the sequencing library according to standard 

procedure of NEBNext Ultra DNA Library Prep Kit (NEB). For multiple fractions MDA of 
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single cells, 1ng DNA of each tube was used to perform library construction with Nextera 

DNA Library Preparation Kit (Illumina). All qualified libraries were pooled together and 

sequenced on Illumina Hiseq2500 platform. 
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II. Theoretical Simulation 

Distribution of original single-strand copies in multiple fractions 

In order to know the probability of a number of ssDNA fragments divided into N 

sub-systems, we firstly consider the probability that 2 ssDNA fragments are divided into N 

fractions. The probability of 2 ssDNA copies distributed into the same fraction is: 

  !",$,% = 1 (   (1) 

The probability of 2 ssDNA copies distributed into different fractions is: 

  !",$,$ = 1 − 1 (     (2) 

Similarly, the probability of 3 ssDNA copies distributed into 1 fraction is: 

  !",$,% = 1 ()    (3) 

The probability of 3 ssDNA copies distributed into 2 fractions is: 

  !",$,% = 3 (-1 (%,   (4) 

The probability of 3 ssDNA copies distributed into 3 different fractions is: 

  !",$,$ = &-1 &-2 &*    (5) 

If the number of ssDNA copies is i, the probability that they are distributed into j fractions is 

!",$,%   , we have: 

  !",$,% = 1 ( $-%     (6) 

  !",$,$ = &-($-)
*+) & $-)     (7) 

  !",$,% = !",$-(,%** + + !",$-(,%-(* +-* + 1 +	    (8) 

For a typical diploid cell which has 4 single-strand copies, the result of distribution into 

multiple fractions was shown in Table S1. When the number of total fractions is fixed, a 

different number of ssDNA copies will result in different distributions. Table S2 shows the 

probability distributions of 2, 4, 6, and 8 ssDNA copies (corresponding to copy numbers 1, 2, 

3, and 4) dispersed into 20 fractions. 

The probability of an ssDNA copy been amplified successfully 

To simplify the model, we used haploid sperm cells as samples. We distributed the single 

sperm reaction mix into five or seven fractions. After amplification, the exons were enriched 

and sequenced. In order to obtain accurate and reliable results, we selected unique SNP sites 

of the individual in the exon group for analysis to get rid of potential contaminations. Sperm 
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1 was distributed into 5 fractions. 20790 SNP sites were detected in only 1 of the 5 fractions, 

and 4599 sites in 2 of the 5 fractions. Sperm 2 was distributed into 7 fractions. 19054 SNP 

sites were detected in only 1 of the 7 fractions, and 3216 sites in 2 of the 7 fractions.  

When the probability of an ssDNA copy been amplified successfully is r, for sperm 1, the 

probability of 2 single-strand copies separated into 2 fractions is: 

  !",$,$ = 1 − 1 5 = 0.8    (9) 

If the ssDNA copy number is l, the probability of m ssDNA copies being amplified ql,m can 

be calculated using binomial distribution: 

  !",$ = C"$'$ 1 − ' "-$     (10) 

For sperm cells, the probability of 2 ssDNA copies both being amplified is 

  !"," = C""&" 1 − & ) = &"    (11) 

Combined with the probability that 2 ssDNA copies are separated into 2 fractions, the 

probability that 2 ssDNA copies are detected in 2 fractions is 

  !"," = %&,","*("," = 0.8	-"    (12) 

If both of the 2 ssDNA copies fail to be amplified, the copy will be detected in none of the 5 

fractions. The probability is t2,0=(1-r)2. So the probability that a certain copy is detected in 

only 1 fraction is 

  !",$ = 1 − !","-!",) = 1 − 1 − * "-0.8	*"    (13) 

Combined with experimental value: 

  !",$!","
= &' &'( "-*.,	("

*.,	(" = .*/0*
1200     (14) 

We will have 

  	" = 0.37    (15) 

For sperm 2: 

  !",$!","
= &' &'( "-*.,-	("

*.,-	(" = &/*-0
12&3     (16) 

We have 

  	" = 0.30    (17) 

According to the result and analysis above, we find that in our experiments, the probability 

for an ssDNA copy being amplified is about 0.3-0.4. When the probability is 0.4, for a 

haploid cell, the theoretical maximum coverage of MDA is 0.64, and for diploid cells, the 

maximum coverage is 0.87. Similarly, for triploid and tetraploid cells, the maximum 
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coverage is 0.95 and 0.98. 

Positive	values	and	copy	number	

In the experiment, there are l original ssDNA copies, and they are distributed into N fractions. 

After amplification, if the copy is detected in u of N fractions, we call the copy has a positive 

value of u. The probability that a copy has a positive value of u is 

  !",$ = &",'*)*,',$
"
'+$     (18) 

If the probability for an ssDNA copy being amplified r is 0.4, the probability of different 

positive values when 2-8 ssDNA copies are distributed into 20 fractions is shown in Table 

S3. According to Table S3, a single fragment with a given number of ssDNA copies may 

have different positive values. For a number of fragments which share the same copy number, 

if we count the number of all the positive values, we will find the percentage of each positive 

values get more and more closed to the probability shown in Table S3 as the number of 

fragment grows. For example, a region which has M fragments with the same copy number 

is analyzed. The fragments are distributed and amplified independently, which can be treated 

as N Bernoulli trials. The result shows that e0 fragments have a positive value of 0, e1 

fragments have a positive value of 1, e2 fragments have a positive value of 2… and en 

fragments have a positive value of n. The frequency of a positive value n across the region fn 

is en/ M. For multiple regions the fn should follow the multinomial distribution. Figure S1 

shows the probability distributions of frequencies for different positive values in a region 

containing 20 fragments. With different original copy numbers, the frequencies of different 

positive values will be different. The more fragments the region contains, the more Bernoulli 

trials there will be, the probability distributions of frequencies for different positive values 

would be more close to the mean. Figure S2 shows the probability distributions of 

frequencies for different positive values in a region containing 50 fragments and Figure 2 

shows the probability distributions of frequencies for different positive values in a region 

containing 100 fragments.  
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III.	Whole	genome	amplification	of	single	HT-29	cells	

From	read	depth	to	positive	values	

The insert size was 200-300 bp during the library construction and the read length is 2*150 

bp using paired-end sequencing. We choose 200 bp as the size of a fragment. Each fragment 

is treated as a locus. If the starting position of a read falls within the range of a fragment, the 

read depth of the locus is increased by one.  

For each fraction, the read depth of each locus was summed across the entire genome, with 

an average depth of 27.7. To remove potential contamination, only locus with a reading 

depth >= 3 will pass the filter. Then for each fraction, we count the positive values of all the 

fragments. 

Based on our calculation described above, when the probability that an ssDNA copy being 

successfully amplified is 0.4, the probability that at least 10 out of 12 ssDNA copies of a 

fragment are amplified is: 

  C"#"$*0.4"$ 0.6 # + C"#""*0.4"" 0.6 " + 0.4"# = 0.003    (19) 

Since this probability is small, and the Ht-29 cell is average triploid (6 ssDNA copies), we 

set another filter to remove those fragments with positive values larger than 10, which may 

be contamination or the none-specific regions.  

Low	resolution	Copy	Number	Variation	

Low resolution CNV regions are needed for training the frequency probability distribution of 

different positive values. The data of multiple fractions are merged and treated as a 

conventional MDA experiment. We use bin sizes from 0.05 M to 2.50 M and get the CNV 

result using DNACopy package. Then we calculate the coefficient of variation (CV) of bin 

read depth in the largest 50% of CNV regions, and get the size-weighted normalization as 

the final result. As shown in Figure S3, as the bin size grows, the CV value drops first, then 

raises, and finally drops again. That is because when the bin size is small, the random noise 

of MDA affects the accuracy of CNV segmentation. The noise gets smaller as the bin size 

grows. However, when the bin size is too large, regions with different copy number may be 

put into a single bin and makes CNV calling inaccurate, leading to an increase in CV result.  

We find that the CV result has a local minimal value when the bin size is 0.7-0.8 M. So we 
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choose 0.7M as the bin size for calling low resolution CNV. We select CNV regions with a 

size larger than 20M, as shown in Table S4, to generate the probability distribution matrix. 

The probability distribution is generated according to the processing region size s. For 

example, s can be 20, 100 or 500 kb, which means a single region contains 100, 500 or 2500 

fragments. For each low resolution CNV region, regions are sample from the beginning to 

the end with an increment of starting point by 200 bp. For each region sampled, the 

frequency of 0-8 positive value is obtained. And the probability distribution of different 

positive values can be obtained after all the low resolution CNV region with different CNVs 

are processed. Each probability distribution is smoothed using moving average method with 

a window size of 0.04 to remove noise. The probability distribution is denoted as: 

  !(#, %, &)    (20) 

c is for the copy number, and e is the probability density of positive value p in the region. 

Get	copy	number	using	maximum	likelihood	

A region is sampled from the genome data in a given size. The frequencies of positive values 

0 – 8 are calculated as e0, e1, …e8.  For each possible copy number c, the probability is: 

  !" = $ %, ', ()*
)+,     (21) 

The copy number with max probability Pc is the most possible CNV for the region. 

 

Time to analyze 

The sequencing data is mapped and BAM files are generated. Starting from BAM files, our 

naïve MATLAB scripts take about 20 minutes to process a whole human genome with a 

3.4GHz i7-3770 CPU computer. The code is rewrite in C and a 5X speedup is obtained. That 

means the whole analysis can be done in less than 4 minutes. The time can be further 

reduced with multithreading optimization. 
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Supplementary Figure S1. The probability distributions of frequencies for different positive 

values (PV) in a region containing 20 fragments. Positive values are 0, 1, 2, 3, and 4 from 

left to right. The color blue, green, red, and cyan represent regions with ssDNA copy number 

of 2, 4, 6, and 8. Different original ssDNA copy numbers will result in different positive 

value distribution. 
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Supplementary Figure S2. The probability distributions of block containing 50 fragments 

with a positive value of 0 to 4. 
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Supplementary Figure S3. The coefficient of variation (CV) of read depth in each block. 

The CV value move down quickly when the block size is smaller than 0.7 M, and move up 

when the block size larger than 0.8M. Then the CV value drops below 0.25, and the noise 

drop has been slower. 
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Supplementary Figure S4. The results of maximum likelihood method in chromosome 8 (A) 

and chromosome 14 (B). There was a significant reduction in the number of copies obtained 

using multiple copies of MDA compared to a single copy of MDA at a block size of 500 kb. 
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Supplementary Table S1. The result of the distribution for 4 ssDNA copies distributed 

into multiple fractions. 

              Number of  
            positive 

              fractions* 

Number of  
total fractions 

1 2 3 4 

4 0.09 0.56 0.33 0.02 

5 0.19 0.58 0.22 0.01 

6 0.28 0.56 0.16 0.00 

7 0.35 0.52 0.12 0.00 

8 0.41 0.49 0.10 0.00 

9 0.46 0.46 0.08 0.00 

10 0.50 0.43 0.06 0.00 

11 0.54 0.41 0.05 0.00 

12 0.57 0.38 0.04 0.00 

13 0.60 0.36 0.04 0.00 

14 0.63 0.34 0.03 0.00 

15 0.65 0.32 0.03 0.00 

16 0.67 0.31 0.03 0.00 

17 0.68 0.229 0.02 0.00 

18 0.70 0.28 0.02 0.00 

19 0.71 0.27 0.02 0.00 

20 0.73 0.26 0.02 0.00 

* Fractions which contain at least 1 original copy. 
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Supplementary Table S2. The result of the distribution for multiple ssDNA copies 

distributed into 20 fractions.  

          Number of  
        positive 

            fractions 
Number of  
ssDNA copies 

1 2 3 4 5 6 7 8 

2 0.05 0.95 - - - - - - 

4 0.00 0.02 0.26 0.73 - - - - 

6 0.00 0.00 0.01 0.12 0.44 0.44 - - 

8 0.00 0.00 0.00 0.01 0.08 0.29 0.43 0.20 

 



 

S-16 

 

 

Supplementary Table S3. The probability of positive values for a single fragment with 

different ssDNA copies in mfMDA. 

	 	 	 	 	 	 	 	 	 	 Positive    
Values 	 	 	 	 	 	 	

Number of  
ssDNA Copies	

0	 1	 2	 3	 4	 5	 6	 7	 8	

2	 0.36	 0.49	 0.15	 -	 -	 -	 -	 -	 -	

4	 0.13	 0.36	 0.35	 0.14	 0.02	 -	 -	 -	 -	

6	 0.05	 0.20	 0.34	 0.27	 0.11	 0.02	 0.00	 -	 -	

8	 0.02	 0.10	 0.24	 0.30	 0.22	 0.09	 0.02	 0.00	 0.00	
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Supplementary Table S4. The low resolution CNV regions used for training the 

probability distribution matrix. 

Copy number chromosome Start  End  Length  

1 8 1 42 42 

2 3 1 58 58 

2 4 161 185 25 

2 6 67 156 90 

2 14 26 105 80 

2 18 22 76 55 

2 21 16 47 32 

3 1 25 119 95 

3 1 152 204 53 

3 2 137 240 104 

3 4 1 48 48 

3 4 55 146 92 

3 5 59 179 121 

3 6 2 55 54 

3 8 52 85 34 

3 9 75 138 64 

3 10 55 132 78 

3 12 44 129 86 

4 1 213 246 34 

4 2 4 90 87 
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4 3 95 128 34 

4 3 152 196 45 

4 7 24 54 31 

4 7 66 155 90 

4 11 2 47 46 

4 11 84 133 50 

4 13 24 111 88 

4 15 29 98 70 

4 19 30 57 28 

4 20 33 53 21 

6 8 118 142 25 

 

 


