
ARTICLE

High-throughput single-cell whole-genome
amplification through centrifugal emulsification
and eMDA
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Single-cell whole-genome sequencing (scWGS) is mainly used to probe intercellular genomic

variations, focusing on the copy number variations or alterations and the single-nucleotide

variations (SNVs) occurring within single cells. Single-cell whole-genome amplification

(scWGA) needs to be applied before scWGS but is challenging due to the low copy number

of DNA. Besides, many genomic variations are rare within a population of cells, so the

throughput of currently available scWGA methods is far from satisfactory. Here, we integrate

a one-step micro-capillary array (MiCA)-based centrifugal droplet generation technique with

emulsion multiple displacement amplification (eMDA) and demonstrate a high-throughput

scWGA method, MiCA-eMDA. MiCA-eMDA increases the single-run throughput of scWGA

to a few dozen, and enables the assessment of copy number variations and alterations at

50-kb resolution. Downstream target enrichment further enables the detection of SNVs with

20% allele drop-out.
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In the last decade, we have witnessed many exciting advances
in single-cell studies, primarily due to high-throughput DNA
sequencing technologies such as next-generation sequencing1.

This has become the default choice to dissect complex systems,
such as the trajectory of cancer evolution2–5 or embryonic
development6–8, through sequencing every single cell’s tran-
scriptome9–13, genome14–19 or epigenome20–23. Such omics data
not only provide a comprehensive atlas for a biological system
consisting of many cells with various types and states, but also
offer many opportunities for new discoveries in biology and
medicine.

Quantitative and precise description of the genomic variations
in a heterogeneous biological system remains a challenge, pri-
marily due to the lack of a high-throughput single-cell whole-
genome amplification (scWGA) technology. First, the single cell’s
genomic DNA, merely 6 pg in total for a diploid human cell,
needs to be amplified a few hundred or more times in order to
generate enough material to prepare a library to feed the
sequencers24. Hence, scWGA has to be efficient. Besides, each cell
can only be amplified once, so the scWGA process has to cover as
much of the genome as possible25. Second, single-cell whole-
genome sequencing (scWGS) provides two of the most important
types of information regarding genomic variation, copy number
variations (CNVs) and single-nucleotide variations (SNVs), for
each cell. Hence, the scWGA process needs to be faithful and
unbiased to preserve the information on base composition and
copy numbers. Third, to capture the heterogeneity between cells,
this amplification process needs to be scalable to many cells with
high reproducibility.

High uniformity, low error rate and broad coverage are three
major prerequisites of WGA to accurately, precisely and com-
pletely identify both CNV and SNV events of a single cell26.
However, currently available methods still face various difficulties
to completely fulfil these requirements. Two prevalent methods
are degenerate oligonucleotide-primed PCR (DOP-PCR)27 and
multiple displacement amplification (MDA)28. DOP-PCR has
been demonstrated to be a reliable technology to provide low-
noise CNV profiles. However, the genomic coverage by DOP-
PCR is relatively low, limiting its applications in SNV-related
studies. MDA, in contrast, exhibits satisfactory genomic coverage
(~70% for a single human diploid cell), but its extremely high
amplification bias prevents it from being used for high-resolution
CNV calling. Two other recently established methods, multiple
annealing and looping-based amplification (MALBAC)15 and
linear amplification via transposon insertion (LIANTI)29, incor-
porate quasi-linear or linear amplification steps into the process.
They can thus suppress unevenness of the amplification and
obtain high coverage of a single cell’s genome; however, the whole
amplification process is laborious and requires specialized reagent
like custom transposons.

We recently demonstrated an alternative approach of scWGA
by implementing the reaction in water-in-oil emulsion30. When
an MDA reaction, with a volume of dozens of microliters, was
evenly compartmented into a large number of picoliter droplets,
the evenness of amplification could be improved while preserving
MDA’s ease of operation, high fidelity and high coverage. This
emulsion MDA (eMDA) approach required monodispersed
emulsion to ensure uniform amplification. We and others have
shown two ways of generating these droplets, using either
microfluidic chips30 or spinning capillary in oil31. However,
neither of these approaches was easy to operate without specific
training or commercially available instruments, nor would they
be compatible with the operations with which biomedical
researchers are familiar. Moreover, such emulsion generation
methods are difficult to scale to higher throughput. To overcome
these difficulties, we can apply our recently published droplet

generation method based on micro-capillary array (MiCA)32 to
generate water-in-oil emulsions with high speed, great mono-
dispersity, zero sample loss and compatibility with general
laboratory supplies.

In this study, we combined MiCA emulsion generation with
eMDA (MiCA-eMDA), achieving high throughput and overcoming
the technical barriers for laboratories with limited microfluidics
experience. We demonstrated that the centrifuge-driven MiCA
emulsion generation was naturally high-throughput, with the
capacity to simultaneously process up to 48 samples in a single
centrifugal run. This simple and efficient emulsification strategy
can ultimately facilitate biological applications that utilize droplets.
We have proven that, with appropriate oil and surfactant combi-
nations, such MiCA-generated emulsion had no influence on the
efficiency of amplification compared with the previously reported
microfluidic eMDA results. We also applied hybridization-based
target enrichment on our MiCA-eMDA products, enabling the
simultaneous identification of both CNV and SNV from the same
single cells. We processed 46 single cells with MiCA-eMDA and
obtained the CNV profile through shallowWGS. Single-cell analysis
revealed a 10-Mb heterogeneous CNV otherwise buried in the bulk
results. We further performed targeted deep sequencing on 15 cells
and detected SNV with 20% allele drop-out.

Results
High-throughput emulsion generation and whole-genome
amplification. In our previous study on MiCA droplet genera-
tion, this approach was demonstrated in a low-throughout fash-
ion using a standard swing bucket rotor32. Here, we re-designed
the swing buckets (Supplementary Fig. 1) to further improve the
throughput. With six four-tube buckets in a rotor, the emulsifi-
cation throughput was increased to 24 samples per run (Fig. 1a).
During centrifugation, the aqueous reaction mixture containing
single-cell lysate, primers, dNTPs and phi-29 polymerase was
spun through MiCA at >15,000 × g (Fig. 1b) and formed 40-µm-
diameter droplets in the oil phase composed of 93% isopropyl
palmitate and 7% ABIL EM180 (Supplementary Fig. 2). This
process of emulsion generation is extremely efficient, with a rate
of droplet production of over 2000 per second. When using a
seven-hole MiCA plate, it typically took less than 8 min to spin
down each sample, producing more than 106 droplets.

Cell lysis was implemented by manually picking up and placing
each single cell into 2 μL of PBS buffer, followed by the addition
of 1.5 μL of alkaline cell lysis buffer and 10 min of incubation at
65 °C to release the genomic DNA. Then 1.5 μL of neutralization
buffer was added to each microtube to terminate the lysis step.
Subsequently, amplification mix containing all of the necessary
MDA reagents was added. This entire reaction mix (10–100 μL)
was then emulsified using MiCA through centrifugation. We
performed a systematic combinatorial test on the surfactant
recipe and selected 7% ABIL EM 180 to stabilize the isopropyl
palmitate oil phase. The emulsion was incubated at 30 °C for 8 h,
before heat inactivation of the phi-29 polymerase at 65 °C. The
droplets maintained monodispersity throughout the whole
process (Fig. 1c). Our previous test suggested that extending the
reaction time beyond 8 h would not confer additional benefits to
the eMDA process. The reactions were terminated by heating and
isobutanol was added to demulsify the water-in-oil droplets.
Then, purification was performed with Zymo-Spin™ columns
(Zymo Research) coupling with DNA Clean & Concentrator kit
(Zymo Research) following the recommended protocol. After
demulsification and purification, we usually recover ~1 µg of
high-molecular-weight amplification product, which is more than
enough for downstream sequencing library preparation (Fig. 1d).
The whole process of MiCA-eMDA is simple, making it possible
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for a single researcher to complete dozens of scWGA procedures
and to construct corresponding libraries within a day or two.

A web-facilitated analysis pipeline for single-cell genomics.
Quantitative analysis of single-cell sequencing data is difficult,
especially when such data have to be obtained through high-gain
amplification. When handling small datasets from only a few
single cells, it is common to manually check the result of each
single cell. Processing large datasets, however, requires more
efficient strategies. Therefore, we established an analysis pipeline
(Fig. 2) that automatically implements the whole process required
for single-cell genomic analysis. This pipeline first performs
quality control of the raw sequencing data and aligns the filtered
reads to the reference genome (Fig. 2a). Then, the pipeline pro-
vides two different analytical functions, baseqCNV for CNV
analysis with low-coverage WGS data (Fig. 2b) and baseqSNV for
SNV identification with targeted deep sequencing data (Fig. 2c).
BaseqCNV and baseqSNV are Python-based packages and are
easy to install and configure. With raw sequencing data input in

fastq format, these two packages can automatically process the
data and generate the files needed for visualization. The entire
procedure is user-friendly, including for those with limited
bioinformatics experience.

For CNV analysis, single dynamic binning of the genome is
required. BaseqCNV counts the reads in each bin of the genome
and the outputs can be submitted to an online toolset (http://wgs.
beiseq.cn) for downstream analysis. After correcting the sequen-
cing depth based on GC content, the online toolset calculates the
ploidy of nondiploid cells using our absolute copy-number
determine (ACD) algorithm and determines the copy number of
each bin with circular binary segmentation. We use median
absolute deviation (MAD) as a metric to evaluate the evenness of
amplification. The dropout ratio, calculated as the proportion
of bins with zero aligned reads, indicates the genome coverage.
Low-quality cells can be filtered out using these two metrics.
Neighbouring bins can be merged to segments before final
visualization. BaseqSNV follows the GATK best practice for
variant calling33 (Fig. 2c). Allele dropout rate and coverage
breadth are calculated using unamplified bulk samples as a
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control. We have uploaded the data described in this paper for
users to explore and reproduce the results using the packages
(see Supplementary Information for details).

High-throughput single-cell MiCA-eMDA and CNV analysis.
The improved evenness by eMDA is derived from the compart-
mentalization. Within each droplet, the amplification is inde-
pendent, which reduces competition and bias. The number of
compartments is critical to the final performance of eMDA,
markedly affecting the evenness of amplification and the mapping
ratio of the sequencing reads. Once the droplet size is fixed, the
number of droplets is simply determined by the volume of the
aqueous reaction mixture. With single HeLa cells as starting
material, we constructed a series of reactions ranging from 10 to
100 μL in volume, and compared the results to those from the
conventional MDA performed in a microtube (tube-MDA) as
well as from the emulsion generated by microfluidic chips (chip-
eMDA). Before sequencing, we calculated the amplification yield
by quantitative PCR. The results showed no difference among
the different reactions (Supplementary Fig. 3, Supplementary
Table 1).

We then conducted shallow whole-genome sequencing at an
average depth of 1.3x per cell (Supplementary Table 2) for all of
the 63 single-cell WGA products. We also included two
unamplified bulk samples using purified genomic DNA from
107 HeLa cells for comparison. The baseqCNV pipeline can
automatically process scWGS data and generate representative
whole-genome CNV profiles for each single cell at various
resolutions (Fig. 3, Supplementary Data 1, Supplementary Data 2
and Supplementary Fig. 4). Most of the samples showed similar

mapping ratios, typically above 50%, while the amplification
uniformity was quite diverse among the amplification methods.

Using the bulk sample as a reference, all of the single-cell
samples amplified by eMDA approaches (chip-eWGA and
MiCA-eWGA) showed similar CNV profiles. In contrast, the
single-cell samples amplified by conventional ‘one-pot’ tube-
MDA showed extraordinarily high bias randomly distributed
across the whole genome. Such bias is a major obstacle to
confidently determining the copy numbers with high resolution.
Quantitatively, the 1-Mb bin MAD value of each eMDA sample
was generally between 0.30 and 0.47, while the conventional tube-
MDA has a typical MAD value of 1.3 (Fig. 4a, Supplementary
Data 3). It is also worth pointing out that the MAD values are
based on the absolute difference between adjacent bins. There-
fore, aneuploidy or large CNVs would not erroneously increase
the MAD value. MAD value is also dependent on bin size. For
a given sequencing dataset, a larger bin size will give a smaller
MAD value, which is related to sampling noise. We tested
different bin sizes from 50 kb to 1Mb, and confirmed that MiCA-
eMDA products exhibited the lowest MAD values and that
conventional tube-MDA had the highest MAD values, represent-
ing high evenness of amplification of MiCA-eMDA products
(Fig. 4b, Supplementary Data 3).

As expected, reaction volume affects amplification uniformity
through compartment number, as quantified by MAD values.
When droplet size was kept constant, a large volume (high
compartment number) and a small volume (low compartment
number) both resulted in elevated MAD values and there was an
optimal volume between the two. We obtained the lowest MAD
value in the serial experiments from 40-μl reactions, which
corresponded to 1.3 × 106 40-μm-diameter droplets. Given the fact
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that genomic DNA is usually fragmented to about 10–20 kb by our
laboratory operations, the genome of a single diploid cell is broken
into ~1 million single-strand DNA fragments. Thus, most droplets
will not contain more than one template. If the number of droplets
is too low, each droplet will take too many DNA fragments.
Amplification bias among these fragments is inevitable and the

MAD value will be high. Alternatively, if the number of droplets is
too high, there will be many droplets with no DNA fragments but
lots of random primers. Such droplets will still produce a large
number of products through random primer annealing. These
products cannot be mapped to the genome, leading to a low
mapping ratio and a waste of sequencing effort, and thus require a
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higher sequencing depth. In our experiments, we observed such
monotonically decreasing mapping rate with an increase of reaction
volume (Fig. 4a). Based on the above-mentioned results, we
concluded that the most suitable reaction volume for our MiCA-
eMDA approach, with the optimal emulsification conditions to
generate 40-μm droplets, is between 30 and 50 μL, which
corresponds to DNA fragments in each droplet numbering from
0.4 to 0.7 for a 10-kb DNA fragment size.

Besides amplification bias reflected by MAD values, a more
comprehensive assessment of the evenness of amplification can
be obtained by plotting the Lorenz curves of coverage for each
sample (Fig. 4c, Supplementary Data 4). A perfectly uniform
distribution of sequencing reads across the genome would create
a diagonal line in the Lorenz plot, and any biased distribution
would present a curve towards the edges away from the diagonal.
The Lorenz curve of an unamplified bulk sample would clearly be
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very close to the diagonal since the only bias was introduced by
the library preparation and sequencing process, which have been
optimized over the years. The single-cell eMDA results showed
Lorenz curves close to the result of bulk samples, demonstrating
markedly high evenness compared with the conventional tube-
MDA reactions. MiCA-eMDA further outperformed chip-eMDA,
probably due to the higher monodispersity of emulsion droplets
and less material loss during sample handling, which is in
accordance with the MAD results. Reaction volumes ranging
from 30 to 50 μL showed similar distributions of evenness.

With the CNV profiles generated by baseqCNV, we could
compare the CNV detection ability of different amplification
protocols/conditions. Assuming a homogeneous cell population
in the bulk sample, we identified 61 CNVs ranging from 1.6 to
190Mb (Supplementary Table 3) by rounding the calculated copy
numbers to the nearest integers. These CNVs should be shared
by the vast majority, if not all, of the cells. The other bulk
replicate showed a high detection rate (98.4%, 60 out of 61),
proving the robustness of the CNV detection by our pipeline.
Next, we analysed how many of these CNVs had been detected in
each scWGS dataset (Fig. 4d, Supplementary Data 3). Tube-MDA
products showed low CNV detection rates (42% on average)
due to high amplification bias, whereas eMDA products could
faithfully retain the copy number features with detection rates
between 77 and 87%. In accordance with the MAD results, the
CNV detection rate reached a plateau in MiCA reactions with a
volume over 30 μL.

Lower amplification bias of eMDA leads to higher accuracy of
copy number determination, even for small CNV events. While
analysing the CNV profile of bulk samples, we found an
interesting site on chromosome 12 where the inferred copy
number was 2.67. Such a fractional copy number of ensemble
measurement strongly suggested cell heterogeneity in the
population, which consisted of single cells with integral copy
numbers. When carefully checking this 10-Mb region in the
scWGS data, we clearly identified discrete copy numbers of 2 or 3,
showing the expected heterogeneity among single cells (Fig. 4e,
Supplementary Data 3). Such results demonstrate that high-
throughput single-cell analysis is essential for heterogeneous
samples, where analyses of bulk samples can only provide an
average representation of the cells and the important differences
among cells remain obscure.

Single-cell SNV analysis. To validate the SNVs detected through
scWGA by MiCA-eMDA, we performed deep sequencing of a
single cell to an average depth of 48×, and compared the results
with the published chip-eMDA data30. Since many regions of the
HeLa genome are polyploid, we focused on the diploid regions for
heterozygosity and allele drop-out analyses. MiCA-eMDA
showed an allele drop-out rate comparable to that of the chip-
eMDA approach with different sequencing depth cut-offs (Fig. 5a,
Supplementary Data 5). This indicated that there was no extra
fragment loss caused by the introduction of MiCA, which
exhibited high genome coverage and a low false-negative rate
when detecting SNVs due to fragment loss.

Whole-genome deep sequencing, however, is not practical for
high-throughput single-cell SNV analysis due to the high costs.
Targeted deep sequencing can better utilize the sequencing capacity.
In a proof-of-concept study, we designed a gene panel covering 390
cancer-related genes (~1.3Mbp) and performed deep sequencing on
some amplification products together with unamplified bulk
samples to evaluate the ability to detect SNVs. With a mean
sequencing depth of over 180x, both MiCA-eMDA and chip-eMDA
covered over 50% of all targeted loci with sufficient depth for SNV
detection, despite coverage noise at the single-base resolution

(Fig. 5b, Supplementary Data 5). We validated the fragment loss of
the enrichment process and found that this loss was negligible
(Supplementary Fig. 5). When we examined the coverage distribu-
tion across the entire gene body, we clearly identified more skewed
coverage depth profiles in the conventional tube-MDA data (Fig. 5c,
Supplementary Data 6). We then focused on heterozygous SNVs
(Fig. 5d, Supplementary Data 5) identified from the unamplified
bulk sample. We found comparable allele drop-out rates between
MiCA- and chip-eMDA approaches (Supplementary Fig. 6), much
lower than in conventional tube-MDA. Such merits of SNV
identification allow high-confidence and quantitative analyses of
SNV events in single cells using our high-throughput MiCA-eMDA
approach (Supplementary Fig. 7).

Discussion
While the continuous development of sequencing capacity paves
the way towards high-throughput single-cell analysis, achieving
comprehensive and informative descriptions of complex popu-
lations requires direct and extensive progress in single-cell tech-
nologies. There have been two major technical approaches to
improving the performance of single-cell WGA.

The first approach deals with the fundamental chemistry of
amplification. Two relatively conventional methods, DOP-PCR27
and MDA28, are the most popular scWGA chemistries. DOP-
PCR has been proven to be excellent in controlling amplification
bias, but suffers from low coverage and a high rate of amplifi-
cation error when working with single cells. MDA, in contrast,
has been regarded as the most efficient amplification method with
the lowest error rate and high coverage breadth, but exhibits
extremely large amplification bias due to the random initiation of
isothermal amplification. In practice, DOP-PCR is preferred for
high-resolution CNV analysis, whereas MDA is the choice for
SNV analysis or chromosome-level CNV with careful normal-
ization. Two other methods, MALBAC15 and LIANTI29, have
been developed recently to provide highly even amplification for
single cells via quasi-linear or linear amplification. MALBAC,
however, cannot offer sufficient accuracy for SNV identification,
mostly due to the low fidelity of polymerase used. LIANTI, in
contrast, greatly reduces the rate of amplification error through
in vitro transcription. Although LIANTI performs well in both
CNV and SNV identification, the complex experimental process
requires skill for its operation, thus making high-throughput
implementation impractical.

The second approach, mostly based on microfluidics, focuses
on reducing the reaction volume17,34,35. An scWGS study com-
monly targets tens to hundreds of cells, so it is preferred to
perform each cell’s reaction in a small volume and process a large
number of cells in parallel. Previous reports showed that the use
of a small reaction volume might help in reducing the bias of
scWGA, probably due to the suppression of preferably amplified
fragments. An alternative option was to perform scWGA within a
hydrogel, which increased the local concentration of the template
DNA34. However, we found that such an approach typically
resulted in low coverage across the genome when working with
single mammalian cells, the genome of which is relatively large.
In addition, the microfluidic devices are not easy to fabricate or
to operate.

In this paper, we introduce an alternative approach, MiCA-
eMDA, by combining a centrifuge-based emulsion generation
technology with emulsion MDA to overcome three major chal-
lenges. First, although our previous studies demonstrated that
emulsification greatly improved the MDA evenness, the chip-
based emulsion generator is still an ideal choice for most biolo-
gists. In contrast, MiCA emulsification, realized by one-step rapid
centrifugation, greatly simplifies the most difficult experimental
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process and hence further promotes eMDA as a simple scWGA
protocol. Second, a centrifuge is a natural high-throughput
instrument, which can simultaneously process many samples,
making the scalability of MiCA-eMDA limited only by the
number of centrifugal tubes that can be placed in the rotor. With
a simple high-capacity swing bucket, as we demonstrated here, a
common desktop centrifuge can process 24 or 48 samples with a
single run in no more than 15 min. Third, in addition to the high
uniformity, eMDA has also a high yield to produce a large
amount of product for targeted enrichment. We have shown that

integrated CNV/SNV analysis of single cells is practical and easy
to operate, especially with our user-friendly pipeline.

In summary, we have developed an easy-to-use high-throughput
emulsion generation device for whole-genome amplification of single
cells. With a centrifuge, the whole emulsification step can be com-
pleted within 15min and with less than 5min of hands-on time. The
diameter of the droplet is tightly distributed and stable throughout
the amplification process. When MDA reaches saturation in each
droplet, the original template in each droplet is amplified with similar
amplitude, resulting in evenly amplified products. With sufficient

Bulk

 Tube MDA

N
or

m
al

iz
ed

 s
eq

ue
nc

in
g 

de
pt

h

Chip-eMDA

MiCA-eMDA

Enriched probe

BRCA1

b

c

a

Published eWGA

MiCA-eMDA

A
D

O

5

0.6

0.4

0.2

0.0

1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

10
Depth cut-off

15 20
0.0

0.2

0.6

0.4

>2
0 

co
ve

ra
ge

Amplification method
Chip-eMDA MiCA-eMDA Tube MDA

d A T G C

Tube MDA

Chip-eMDA

MiCA-eMDA

Reference

Bulk

Fig. 5 The comparison of single nucleotide detection ability between conventional MDA, on-chip eMDA and high-throughput MiCA eMDA. a Deep whole
genome sequencing shows comparable allele drop-out result when comparing diploid region with published data. b High-throughput MiCA-eMDA shows a
comparable coverage of region enriched compared to standard on-chip emulsion method, both are better than the conventional MDA. c A base resolution
sequencing depth distribution for the enriched BRCA1 gene. d The base composition of a region containing three heterogenous SNVs

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0401-y

8 COMMUNICATIONS BIOLOGY | ����������(2019)�2:147� | https://doi.org/10.1038/s42003-019-0401-y | www.nature.com/commsbio

www.nature.com/commsbio


amplification time and reagents, the high amplification gain would
result in low fragment loss and high genome coverage. Through this
device, we can boost the throughput of single-cell WGA and detect
CNV and SNV inside a single cell at the same time. The amplified
DNA is also compatible with target enrichment to detect CNV and
SNV inside the same single cells. Researchers can focus on regions of
interest and obtain SNV information at a relatively low sequencing
cost. With the web tool that we provided, researchers can easily
reproduce the results that we present in this paper and perform
single-cell analysis of their own data. To detect the heterogeneity
within a cell population, high throughput and good preservation of
genomic information are essential. For diploid mammalian cells,
there are only two copies for each DNA molecule, which could be
amplified only once. Thus, simultaneous detection of SNV and CNV
is difficult to achieve, especially when high throughput is also needed.
Our MiCA-based emulsion amplification method solves this pro-
blem effectively. We here provide a comprehensive solution for
single-cell genomic analysis from DNA amplification to bioinfor-
matic analysis and output.

Methods
Device setup and droplets generation. Compared to our previous published
paper, the swing bucket rotor is redesigned to hold a 4-Tube Strips (half of 200 μL
PCR 8-Tube Strip) (Supplementary Fig. 1) to improve the throughput of droplet
generation per run. Meanwhile, the manifold is also redesigned to hold 4 MiCA
plates. After inserting MiCA plates into the manifold, plastic screws are used to
keep the plates in place. When aqueous phase is transferred to the sample reservoir
on the top of the plate and apply centrifugal force, the aqueous reaction buffer
would flow through the MiCA plate and form droplets in the collection tube
underneath which contains oil and detergent (93% isopropyl palmitate, 7% Abil
EM180). Using this new design, one single swing bucket rotor is capable of
emulsifying 4 samples in parallel. At 15,000 rcf centrifuge speed, the whole
emulsification process could be completed within 20 min even for as large as
100 μL reaction buffer input. For a conventional centrifugal machine, six swing
bucket rotors could be placed in parallel, thus up to 48 samples would be emulsified
in a single run.

Droplets uniformity and stability. To verify the uniformity of droplet size dis-
tribution between the four emulsified samples inside a rotor, we first use 1 × PCR
buffer (NEB) as aqueous phase input for control. At 15,000 rcf centrifuge speed, the
average diameters of droplets generated from four MiCA plates in a single swing
bucket rotor are 38.93 μm (CV= 0.03645), 40.69 μm (CV= 0.01819), 39.01 μm
(CV= 0.02675) and 39.06 μm (CV= 0.02729) (Supplementary Fig. 2A). From the
size distribution we could conclude the droplets are monodispersed with diameter
around 40 μm under this condition, and droplets generated from four different
MiCA plates have no difference (Supplementary Fig. 2B). The stability of the
droplets was confirmed by observing the droplets after amplification.

Cell culture. HeLa cell were provided by Professor Yujie Sun in the School of Life
Sciences at Peking University. We cultured the HeLa cell using DMEM medium
(Invitrogen) with 10% FBS (Invitrogen) and 1%PS (Invitrogen) at 37 °C in a
humidified incubator supplemented with 5% CO2. Cells were passaged before
becoming fully confluent in order to maintain their proliferation phenotype. Cells
were digested with 0.25% trypsin containing 0.1% EDTA (Invitrogen) and wash 3
times with PBS before transferred and resuspended in new petri dish.

Single cell preparation. Cell suspension were first diluted using PBS and dispersed
into single cell. Then mouth pipet was used to pick single cell from the diluted
suspension under stereoscope. Then the picked single cell was washed and trans-
ferred to a 200 μL centrifuge tube containing 2 μL PBS buffer using new and clean
capillary tip with minimum residue buffer from upstream process.

Single cell MiCA-eMDA reaction. We first added 1.5 μL Buffer D2 (REPLI-g
Single Cell Kit) to single cell suspension and the single cell was fully lysed after
incubating at 65 °C for 10 min. The lysis was terminated by adding 1.5 μL Stop
Solution to neutralize the alkaline lysis buffer. Then the released genomic DNA was
fragmented and denatured by heating at 98℃ for 4 min. Reaction buffer (final
concentration of 1× Phi 29 polymerase reaction buffer (NEB), 50 μM N6 primer
(Invitrogen), 1 mM dNTP) was then mixed with the DNA and heated to 95 °C for
2 min and quick cool to 4℃ to maintain the single strand state of the DNA, the
mixture is placed at 4℃ for another 20 min for random primer to fully anneal to
the single stranded gDNA. Phi-29 polymerase is added right before emulsification
to prevent non-emulsified amplification.

After adding Phi-29 DNA polymerase (final concentration at 0.8 units/μL,
NEB), the whole reaction mix is ready for emulsification. The mixture was
transferred onto the top of MiCA plate within the 4-MiCA plate holder. After
applying centrifuge, the reaction mix was dispersed into separated droplets and
collected in PCR 4-Tube strips (half of PCR 8-Tube Strips) containing oil and
detergent underneath. Emulsification of up to 48 samples could be operated in
parallel. Amplification was carried out at 30℃ for 8 h and terminated by heating
at 65 °C for 10 min to inactivate the polymerase.

Single cell Chip-eMDA reaction. The experiment process of chip-based emulsion
MDA was described in detail in our previous published paper30. In summary, the
whole process is the same as MiCA-eMDA except the emulsification step of the MDA
reaction, home-made PDMS chip or glass chip (Dolomite) with flow-focusing feature
was used to disperse the reaction mix into monodispersed droplets. The oil used was
HFE-7500 containing 1% (w/w) EA surfactant (RainDance Technologies).

Conventional single cell MDA reaction. The reaction mix was prepared the same
as MiCA-eMDA reaction. After adding Phi-29 polymerase, the reactions were
directly initiate by incubating the centrifuge tube at PCR machine at 30 °C. After 8
h amplification, the reaction mixture is heated at 65 °C for 10 min to terminate the
amplification process.

DNA purification, library preparation and sequencing. After reactions were
terminated through heat, we used isobutanol to demulsify the water-in-oil droplets
and used Zymo-Spin™ columns (Zymo Research) coupling with DNA Clean &
Concentrator kit (Zymo Research) kit to purify the amplified DNA following the
recommended protocol. Quality control of the amplification result was performed
by measuring DNA amount using Qubit dsDNA HS Assay (Thermo Fisher Sci-
entific) and evaluating the amplification bias through quantitate PCR (Supple-
mentary Fig. 3, Supplementary Table 1). Sequencing libraries were built for
Illumina platform using TruePrep DNA Library Prep Kit V2 for Illumina
(Vazyme) using 50 ng DNA as input. The libraries were sequenced on Illumina
Hiseq 4000 or Hiseq 2500 platform. The sequencing details of each library are
listed at Supplementary Table 2.

Home-made DNA panel enrichment. To improve sequencing depth without
increasing cost, we designed a gene panel consisting 390 cancer-related genes. We
carried out target enrichment following Agilent’s protocol (G7530-9000). Briefly,
we mixed eight WGS libraries in equal ratio, followed by AMPure beads pur-
ification and concentration. We then incubated 500–750 ng DNA library mixture
with 500 ng RNA probes for hybridization. We recovered the captured library
molecules with MyOne Streptavidin T1 beads and amplified with PCR before
sequencing.

CNV calling. We developed a python packaged called baseqCNV (http://wgs.
beiseq.cn) to process the single cell sequencing data. This package integrates
multiple software and provide a full solution to analyze single cell sequencing data
from alignment to CNV result visualization. Reference genome were first split into
50 k-bases bins using dynamic binning method described by Baslan et al.36 and
dynamic bin files for Homo sapiens reference genome (hg19) and Mus musculus
reference genome (mm10) were included with baseqCNV. The raw sequencing
data in fastq format were mapped to the reference genome using Burrows-Wheeler
Aligner (BWA)37 and the number of uniquely mapped reads in each bin was
calculated. The bins with no uniquely mapped reads were defined as dropout. Then
the read counts in each bin were corrected for GC biases using LOWESS
smoothing in R, the GC biases before correction was plotted for quality control. To
determine the ploidy of a single cell with copy number variation, we calculated the
residual error (the square of deviations between the raw and the absolute copy
number) with a series of different ploidy numbers. The one with the smallest
residual error was assigned as the real ploidy, the MAD was calculated by averaging
all the absolute copy number differences between two adjacent bins. MAD was
used to depict the technical noise during amplification. All the cells were then
subjected to a quality control step, cells were valid with MAD <= 1 and dropout
ratio <= 0.5. CBS segmentation tools (DNAcopy in R) was then used to calculate
an integer copy number for each bin. The normalized read counts in each bin and
copy number for each cell were visualized using ggplot2 package in R.

SNV detection. The detection follows the baseqSNV package (http://wgs.beiseq.
cn). Reads were first trimmed and filtered with the following criteria: adaptors were
removed according to reverse complementary sequence of the pair-end reads, and
filtered reads were dynamically trimmed with a Phred cutoff of 20. Reads were then
mapped to human GRCh38 reference genome by Bowtie2 (MapQ ≥ 15)38. The bam
files are first labelled for the PCR duplications with Picard MarkDuplicate. Mapped
bam was realigned by GATK IndelRealigner33. Genotype was called with realigned
bam on target region by GATK HaplotypeCaller (BaseQ ≥ 15). Heterozygosity
analysis was performed using standard of minor allele frequency ≥ 5%, depth ≥ 5
(single cell), and MAF ≥ 20%, depth ≥ 30 (unamplified sample).
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Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data is available at SRA under accession code SRP188831. All other data can
be accessed on our website (http://wgs.beiseq.cn).

Code availability
Users can download the baseqCNV and baseqSNV package from Python Software
Foundation (www.pypi.org) for CNV and SNV analysis. The software enables the
submission or upload of results for further visualization from command line (http://wgs.
beiseq.cn).
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Figure S1. Schematic illustration of high-throughput centrifugation MiCA 
assembly (left: 24 samples per run. Right: 48 samples per run).  



a) 

 

b) 

 

Figure S2. a) Microscopic images and b) size distribution of the water-in-oil 
emulsion droplets generated by four MiCA in the same single swing bucket. 

  



 
 

Figure S3. Quantitative PCR QC results of the WGA products. 
 
 
 
  



 
Figure S4. The whole-genome copy number profiles of different samples. (More on 
our website http://wgs.beiseq.cn)  



 
 
 
Figure S5. The allele drop-out (ADO) of two unamplified bulk samples after panel 
enrichment compared to whole genome sequencing data.   



 
 

Figure S6. The allele drop-out (ADO) of scWGA products from different methods by 
deep sequencing after panel enrichment. 
  



 
Figure S7. Base composition of individual samples in a region with a valid 
homozygous SNV. Grey blocks represent loci with no sequencing coverage. 
 
  



Table S1. The qPCR primers used for quality control 
 
primer 

set chromosome Sequence (5’-3’) 

#1 1 forward: TTTGATGGAGAAATCCGAGG 
reverse: CTGACTCGGAGAGCAGGAC 

#2 3 forward: AGGCTGCTTGACACTTTGAGGA 
reverse: TAGCATTGAAGGTGTGCCTTGC 

#3 5 forward: CTTGCACCAGAATTGCACTGAA 
reverse: GATGTCAATTCTCCCCAGACTGA 

#4 10 forward: CTTCCTGACCTGTTTGCAGT 
reverse: CTTCAGTGCACAGAATGCAG 

#5 12 forward: CGCTCCTGCCCTTACCTCTATC 
reverse: AAACCCGGGAGAAGGAGTATCA 

#6 22 forward: CTGCCAGCCCAATGTTTGTACT 
reverse: GGAAGGAAATGAGGCTTCAACC 

 
  



 
Table S2. Sequencing data summary of all the samples 
 

sample Name 
whole genome 

sequencing 
data(G) 

panel enriched 
sequencing 

data(G) 
bulk_1 146.3 3.8 
bulk_2 1.4 5.6 

chip-eMDA_1 1.9 3.5 
chip-eMDA_2 2.3 2.4 
chip-eMDA_3 2.1 3.3 
chip-eMDA_4 1.8 2.8 
chip-eMDA_5 2.2 2.5 
chip-eMDA_6 2.2 3.5 
chip-eMDA_7 2.7 3.8 
chip-eMDA_8 2.4 3.6 

mica-eMDA_100ul_1 1.2 - 
mica-eMDA_100ul_2 1 - 
mica-eMDA_100ul_3 1.2 - 
mica-eMDA_100ul_4 1.1 - 
mica-eMDA_100ul_5 1.1 - 
mica-eMDA_10ul_1 1.2 - 
mica-eMDA_10ul_2 0.9 - 
mica-eMDA_10ul_3 0.8 - 
mica-eMDA_10ul_4 0.8 - 
mica-eMDA_10ul_5 0.8 - 
mica-eMDA_10ul_6 0.9 - 
mica-eMDA_10ul_7 1.4 - 
mica-eMDA_20ul_1 1 - 
mica-eMDA_20ul_2 1.3 - 
mica-eMDA_20ul_3 1.4 3.7 
mica-eMDA_20ul_4 1.2 2.8 
mica-eMDA_20ul_5 0.9 - 
mica-eMDA_20ul_6 1.1 - 
mica-eMDA_30ul_1 1.1 - 

mica-eMDA_30ul_10 0.8 4.1 
mica-eMDA_30ul_11 1 - 
mica-eMDA_30ul_12 1 - 
mica-eMDA_30ul_13 1 - 
mica-eMDA_30ul_2 1.2 - 
mica-eMDA_30ul_3 1.1 3.3 



mica-eMDA_30ul_4 1.1 3.5 
mica-eMDA_30ul_5 1 3.3 
mica-eMDA_30ul_6 1.1 3.3 
mica-eMDA_30ul_7 1.1 - 
mica-eMDA_30ul_8 1.1 - 
mica-eMDA_30ul_9 0.9 3.6 
mica-eMDA_40ul_1 0.9 3.3 
mica-eMDA_40ul_2 1 2.9 
mica-eMDA_40ul_3 1 - 
mica-eMDA_40ul_4 1 - 
mica-eMDA_40ul_5 144.8 2.9 
mica-eMDA_40ul_6 0.9 3.7 
mica-eMDA_40ul_7 0.9 - 
mica-eMDA_40ul_8 0.8 - 
mica-eMDA_40ul_9 1.2 - 
mica-eMDA_50ul_1 0.9 - 
mica-eMDA_50ul_2 0.9 - 
mica-eMDA_50ul_3 1.1 - 
mica-eMDA_50ul_4 1.3 - 
mica-eMDA_50ul_5 1 - 
mica-eMDA_50ul_6 1.2 - 

tube_MDA_1 0.9 2.5 
tube_MDA_2 1 1.8 
tube_MDA_3 0.8 1.8 
tube_MDA_4 2.4 - 
tube_MDA_5 2.9 - 
tube_MDA_6 2.2 - 
tube_MDA_7 2.2 - 
tube_MDA_8 2.3 - 
tube_MDA_9 2.5 - 

 
 
  



 
Table S3. The copy number profiling of HeLa unamplified sample 
 

chromosome start (absolute 
position) 

end (absolute 
position) copy number 

1 10,385  29,761,479  2 
1 31,086,446  55,003,046  3 
1 56,178,924  89,765,081  7 
1 90,975,802  119,033,213  5 
1 120,326,412  247,506,457  4 
2 249,260,607  276,243,614  3 
2 277,390,497  284,356,528  4 
2 285,520,516  378,027,784  3 
2 379,239,725  491,696,612  2 
3 492,510,170  548,533,431  3 
3 549,685,886  590,133,240  2 
3 591,377,717  689,477,857  3 
4 690,576,122  880,865,128  2 
5 881,638,447  896,892,073  7 
5 898,065,953  904,633,187  5 
5 905,796,654  914,002,640  6 
5 915,189,432  926,482,876  7 
5 927,743,130  1,061,688,507  3 
6 1,062,690,045  1,077,404,032  5 
6 1,078,542,876  1,143,262,493  3 
6 1,144,562,036  1,164,282,568  2 
6 1,165,448,776  1,182,179,288  3 
6 1,183,382,047  1,233,001,066  2 
7 1,233,667,184  1,368,551,837  3 
7 1,369,691,532  1,375,701,777  4 
7 1,377,460,604  1,391,647,275  3 
8 1,392,877,344  1,435,629,088  2 
8 1,440,062,409  1,520,087,249  3 
8 1,521,236,921  1,537,701,111  4 
9 1,539,169,699  1,678,914,393  3 

10 1,680,441,317  1,806,331,248  3 
10 1,807,465,858  1,814,774,439  2 
11 1,815,978,694  1,817,610,375  2 
11 1,818,890,827  1,822,955,180  4 
11 1,824,184,686  1,876,797,619  3 
11 1,878,079,295  1,885,723,650  2 
11 1,886,899,675  1,897,986,776  3 
11 1,899,179,073  1,917,197,030  4 



11 1,918,390,795  1,950,127,628  2 
12 1,950,976,038  2,005,478,234  4 
12 2,006,731,421  2,083,904,678  3 
13 2,103,786,916  2,139,818,824  2 
13 2,141,005,047  2,199,601,358  3 
14 2,220,276,991  2,305,582,831  2 
15 2,329,770,718  2,366,937,280  2 
15 2,368,100,410  2,409,491,301  3 
16 2,409,877,097  2,420,561,029  3 
16 2,421,688,401  2,438,373,162  2 
16 2,440,560,293  2,499,064,230  3 
17 2,500,171,865  2,568,482,914  3 
17 2,569,640,094  2,580,224,246  4 
18 2,581,551,675  2,589,837,904  3 
18 2,591,014,240  2,658,546,123  2 
19 2,659,535,160  2,718,382,797  3 
20 2,718,633,291  2,751,989,131  2 
20 2,753,180,543  2,758,981,786  4 
20 2,760,142,735  2,781,078,711  3 
21 2,797,024,243  2,829,327,763  3 
22 2,847,002,828  2,880,747,920  3 
X 2,883,732,744  2,918,531,717  3 
X 2,919,707,611  3,035,072,959  2 
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