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Highlights 

• Genomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation 

fetus 

• Determining correlated gene modules (CGMs) in different cell types by MALBAC-

DT 

• Measuring chromatin open regions in single cells with high detectability by 

METATAC 

• Integrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM 

 

Summary 

By circumventing cellular heterogeneity, single cell omics have now been widely 

utilized for cell typing in human tissues, culminating with the undertaking of human 

cell atlas aimed at characterizing all human cell types. However, more important are 

the probing of gene regulatory networks, underlying chromatin architecture and critical 

transcription factors for each cell type. Here we report the Genomic Architecture of 

Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address 

the above needs with the goal of understanding the functional genome in action. GeACT 

was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq 

(METATAC) methods of high detectability and precision. We exemplified GeACT by 
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first studying representative organs in human mid-gestation fetus. In particular, 

correlated gene modules (CGMs) are observed and found to be cell-type-dependent. 

We linked gene expression profiles to the underlying chromatin states, and found the 

key transcription factors for representative CGMs. 

 

Keywords 

single-cell transcriptome landscape, single-cell chromatin state landscape, correlated 

gene module, human fetus 

 

Introduction 

A human individual cell, as the basic biological unit of our bodies, carry out its 

functions through rigorous regulation of gene expression, exhibit heterogeneity among 

each other in every human tissue. Single-cell sequencing technologies have allowed us 

to characterize genomic profiles (e.g. genome, transcriptome, methylome, chromatin 

architectures and 3D structures) of individual cells, and have become the most effective 

way of cell typing, i.e. categorizing each cell type by its genomic features. 

 

Single-cell RNA-seq by next-generation sequencers, since its inception (Tang et al., 

2009), has been rapidly advanced by high-throughput development (Klein et al., 2015; 

Macosko et al., 2015) and widely applied to overcome the cellular heterogeneity, which 

is particularly suited for tissue samples contain multiple cell types (Cao et al., 2019a; 

Pijuan-Sala et al., 2019; Wen and Tang, 2019). This prompted the emergence of cell 

atlases of different organisms, including humans by virtue of cell typing (Cao et al., 

2019a; Han et al., 2018; Tabula Muris Consortium, 2018). 

 

Although current scRNA-seq methods have led to discoveries of new and rare cell types, 

their low RNA detectability limited the number of detected genes in each individual 

cell. In general, existing methods reporting only expression levels of genes provided 

little information about gene-gene interactions and regulatory networks. Such 
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information would be available through pairwise correlations between any two genes, 

but remains unmeasurable with the low RNA detectability (Chapman et al., 2020). 

 

Recently MALBAC-DT (see Methods) has improved RNA detectability, allowing not 

only more genes to be detected, but also the covariance matrix of all expressed genes, 

yielding the correlated gene modules (CGMs), i.e. clusters of intercorrelated genes that 

carry out certain biological functions together. It was found in cell lines that genes 

within a CGM have a higher probability for protein-protein interactions (Chapman et 

al., 2020). However, whether CGMs exist in human tissues remains uncharted. 

 

ATAC-seq was first developed to identify genome-wide accessible chromatin regions 

(Buenrostro et al., 2013), which are critical for the regulation of gene expression. 

Chromatin accessible regions are cell-type-specific (Cusanovich et al., 2015). Single-

cell ATAC-seq has been widely used for cell typing, creating the cis-regulatory maps of 

the whole organism such as Drosophila and mouse (Cusanovich et al., 2018a; 

Cusanovich et al., 2018b). However, scATAC-seq has been conducted with limited 

detectability, resulting in false negatives of accessible regions in a single cell 

(Buenrostro et al., 2018; Cusanovich et al., 2018a; Preissl et al., 2018). It is highly 

desirable to have such a map for humans with low dropout rate. 

 

In this work, we used a novel high-detectability method named METATAC (Xie et al., 

2018) (see Methods), which exhibited a ~100-fold increase in unique DNA fragments 

from accessible chromatin regions compared with the previous method (Cusanovich et 

al., 2018a). We used it to generate a chromatin accessibility map of different human 

tissues, together with the MALBAC-DT data. 

 

Chromatin open regions are accessible by transcription factors (TFs) (Buenrostro et al., 

2013), which regulate gene expression, program cell functions, dictate cell 

differentiation and development (Lambert et al., 2018). Although binding motifs for 

TFs are available from the database derived from ChIP-seq data, most of them are false 
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positive binding sites according to the futility theory (Wasserman and Sandelin, 2004). 

Having the CGM and genome architecture at the same time, we could delineate the key 

TFs associated with the CGMs. 

 

Powered with the two newly developed single-cell techniques (MALBAC-DT and 

METATAC), we set out to determine GeACT for human tissues. Here, as the first 

application, we present human mid-gestation (19-21-week) fetuses (Table S1), during 

which the human fetus undergoes massive organ development and maturation. To the 

best of our knowledge, this has not been reported previously. 

 

We profiled well-curated transcriptomic and chromatin accessibility landscapes of 

multiple organs across the digestive, immune, circulatory, respiratory, reproductive, and 

urinary systems. We identified hundreds of CGMs, co-expressed in one or more cell 

types. Integrative analyses in two modalities offer a unique opportunity to find cell-

type-specific cis-regulatory elements for a particular gene, to quantify contributions of 

the open-chromatin architecture to gene expression, and furthermore, to identify key 

transcription factors responsible for each CGM. 

 

All the gene expression/activity data, computational tools and pipelines in this study 

are publicly released on the website at http://geact.gao-lab.org. The precise mapping 

drafted here will be of important reference values for the study of diseases related to 

human organ development, carrying potential clinical applications. 

 

Results 

Construction of the single-cell transcriptome landscape for six major systems in 

human fetus 

To essentially cover the whole human body, we collected 17 representative organs 

(esophagus, stomach, small intestine, large intestine, liver, pancreas, kidney, bladder, 

bronchus, lung, bone marrow, spleen, thymus, heart with artery, diaphragm, ovary and 
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testis) in 31 different sampling positions (e.g. fundus, body and antrum of the stomach) 

from human fetuses at 19-21 weeks post-gestation (Figure 1A). After dissociation and 

non-marker-based FACS sorting, we adopted the high-precision single-cell RNA-seq 

method (MALBAC-DT) (Chapman et al., 2020) for library preparation and cDNA 

sequencing, which produced the transcriptome profile in 42,912 cells (Figure 1B). After 

rigorous quality control, we retained 31,208 high-quality cells, and on average each cell 

contained 1.9 million clean reads, 4,610 detected genes and 25,630 UMIs (Figure S1). 

At the same time, we also created the open chromatin landscape (Figure 1B, see below 

for more details). These two landscapes laid a foundation for further investigation of 

CGMs at both genetic and epigenetic levels (Figures 1C and 1D, see below for more 

details). 

 

To explore the cell composition of each organ, we processed the single-cell data and 

obtained 228 cell clusters (Table S2), each of which was annotated according to well-

known marker genes from the literature (Gao et al., 2018; Li et al., 2017; MacParland 

et al., 2018; Pellin et al., 2019; Young et al., 2018). Then all the cells were clustered to 

make up the global transcriptome landscape (Figures 1B and 2A), which consisted of 6 

primary cell groups common in most organs (epithelial cells, endothelial cells, 

fibroblasts, glial cells, immune cells and erythrocytes) (Figure 2B) as well as several 

cell clusters specific to sexual organs such as Granulosa cells in the ovary and Sertoli 

cells in the testis. 

 

Interestingly, compared with those in the human adult (Cao et al., 2019b; Stuart et al., 

2019), the cells in the human fetus showed higher similarity within cell groups, 

especially for immune cells (Figure 2C). The fibroblasts showed the highest similarity 

between the fetal and adult stage, which indicates their unsynchronized differentiation 

and maturation during development and suggests the earlier development and 

maturation of fibroblasts than other types of cells at mid-gestation stage (Figure 2D). 

 

As one of the organs in the digestive system, the stomach is important for food digestion 
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and absorption (Carey et al., 1983). Different from previous work (Gao et al., 2018), 

which focused on the epithelial cells, we leveraged the full repertoire of stomach cells 

to create a single-cell landscape for the whole organ. There were 20 distinct cell types 

revealed in the current analysis (Figure S2A). Besides the epithelial cells (C1), where 

EPCAM was highly expressed, most cells belong to mesenchyme due to the specific 

expression of VIM (Figure S2B). Among them, we found 8 types of fibroblasts (C5-

C12) according to the commonly expressed COL1A1 but different signature genes 

(Figure S2C). For example, C6 was the most abundant fibroblasts where ADAM28 was 

highly expressed. C12 was the proliferative fibroblasts with the high expression of cell 

cycle-related genes such as TYMS. Moreover, we found 3 types of immune cells, such 

as B cells (C14), dendritic cells or macrophages (C15), and T cells (C16). We also 

identified endothelial cells (C2), smooth muscle cells (C3 and C4), glial cells (C13), 

and CACNA1A+ cells (C17 and C18) and erythrocytes (C19). Besides the signature 

genes used to define cell types, transcription factors (TFs) showed distinct expression 

patterns across cell types (Figure S2D). For example, FOXA2 and EGR were 

specifically expressed in epithelial cells and endothelial cells, respectively. Interestingly, 

ELF3, which played an important role in epithelial cell differentiation, was specifically 

expressed in both CACNA1A+ cells and epithelial cells, indicating that CACNA1A+ 

cells may be a group of epithelial-like cells. Based on the gene ontology (GO) 

enrichment analysis against signature genes, we investigated the putative functions of 

each cell type. Unexpectedly, different fibroblast cell types showed distinct putative 

functions (Figure S2E). For example, the Fibro-FBLN1 and Fibro-NRK cells were 

related to extracellular matrix organization but the Fibro-KCNJ8 cells were related to 

tube morphogenesis. Benefit from the sampling from different physiological positions, 

we were able to explore the spatial-specific cell-type composition. Most of the cell 

types showed a similar composition across different positions of the stomach. However, 

the body of the stomach showed a higher fraction of Fibro-FBLN1 cells but a lower 

fraction of visceral smooth muscle cells than the fundus and antrum (Figure S2F). 

 

As the largest solid organ in the human body, the liver carries out many biological 
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functions such as nutrients processing (Petersen et al., 2017) and blood storage (Brauer, 

1963). In our dataset, we found 19 cell types in the liver (Figure S3A). Different from 

the stomach, the liver contained a substantial proportion of immune cells and 

erythrocytes (Figure S3B). Based on the signature genes (Figure S3C), we defined 

different subtypes of immune cells such as B cells (C7-C9), dendritic cells or 

macrophages (C10), the progenitor of Mast cells (C11), NKT cells (C12-C14) and T 

cells (C15). Interestingly, we found two types of erythrocytes: non-proliferative (C17) 

and proliferative ones (C18), which may reflect the process of blood formation. Besides 

several common cell types such as epithelial cells (C1), endothelial cells (C2-C4) and 

fibroblasts (C5), we also observed multipotent progenitors (MPPs) (C6) with the high 

expression of CD34 and hepatocytes (C16) with the specific expression of CYP3A7. 

We then explored the expression of TFs across these cell types (Figure S3D). 

Interestingly, MYC, a proto-oncogene, was specifically expressed in the epithelial cells. 

Instead, HMGA2 and TFDP1 were specifically expressed in MPP cells and proliferative 

erythrocytes, respectively. As for the putative functions of each cell type, we were 

surprised to find that the Endo-DNTT cell type showed immune-related functions 

(Figure S3E) despite little PTPRC (CD45) expression. Although most of the cell types 

showed similar composition in different positions, the fraction of erythrocytes declined 

from segment IV to around regions (segment VII/VI/II/III) (Figure S3F), highlighting 

the important roles of blood supply in the segment IV (Alghamdi et al., 2017). 

 

The kidney is an important organ in the urinary system. Although much endeavor has 

been made for the fetal kidney (Hochane et al., 2019; Wang et al., 2018; Young et al., 

2018), the 19-20 weeks post-gestation, a key period when glomerular filtration started 

to significantly contribute to amniotic fluid (Rosenblum et al., 2017), was rarely 

covered. In the analysis of the data from the high-precision library preparation method, 

we were able to find 27 cell types in the kidney (Figure S4A). Different from the organs 

mentioned above, the kidney contained substantial epithelial cells with the specific 

expression of EPCAM (Figure S4B), some of which directly reflected the physiological 

structures of the kidney such as proximal tubules (C1), loop of Henle (C2 and C3), 
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distal tubules (C4), principle cells (C5 and C6), ureter epithelium cells (C7). We also 

identified proliferative epithelial cells (C8). Interestingly, we found a type of EPCAM-

positive podocytes (C9), which was different from the traditional one (C10) (Figure 

S4C). Besides epithelial cells, we also observed cap mesenchyme (C11) as well as 

several common cell types in other organs such as endothelial cells (C12-C14), smooth 

muscle cells (C15), fibroblasts (C16-C22), glial cells (C23), immune cells (C24), 

CACNA1A+ cells (C25) and erythrocytes (C26). Different cell types showed distinct 

expression patterns of TFs (Figure S4D). For example, HNF4G and SIM2 were 

specifically expressed in proximal tubules and loop of Henle, respectively, but IRF6 

was highly expressed in ureter epithelium cells. Moreover, two TFs in SOX family, 

SOX17 and SOX1, were specifically expressed in endothelial cells and glial cells, 

respectively. Despite diverse expression across epithelial cell types, the common 

development-related terms indicated their common developmental stage (Figure S4E). 

On the other hand, several cell types showed a highly spatial-specific pattern, which 

may indicate the different functions across kidney positions (Figure S4F). For example, 

Epi-Ureter, as it was named, was specially located in Pelvis. Instead, endothelial cells 

were enriched in Medulla as expected. 

 

Furthermore, the single-cell gene expression for the other 14 organs was also 

systematically investigated (see the website for more details). These resources made up 

the most comprehensive high-precision single-cell transcriptome landscape in the 

human for the first time. 

 

The architecture of gene expression profiles across organs 

The comprehensive transcriptome dataset paves the way to systematically exploring the 

similarity of expression profiles in different organs at the single-cell resolution. Based 

on the hierarchical clustering of all expressed genes, cell types from different organs 

but with similar physiological identities (e.g. epithelial cells, endothelial cells and 

fibroblasts) were tended to be grouped together, suggesting their similar functions and 

gene expression patterns across different organs (Figure 3A). A similar pattern was also 
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found in the clustering based on only TFs, cell surface markers or lncRNAs, which 

indicated that they may all contribute to the specific functions of each cell identity 

(Figure S5). 

 

On the other hand, even cells with similar identities showed distinct features across 

different organs. For example, the epithelial cells could be largely clustered by the 

corresponding organs (Figure 3B). The cells tended to be grouped with the ones from 

the organ in the same system, such as lung and bronchus, which indicated that this 

pattern was contributed by physiological differences instead of technical batch effects 

across organs. Several genes showed distinct expression patterns in the epithelial cells 

across different organs (Figure 3C). For example, the esophagus epithelial cells showed 

the specific expression of KRT15, which was reported as a signature gene of the 

esophagus mucosa (Mele et al., 2015). Instead, MUC13 was specifically expressed in 

the epithelial cells of the small intestine and large intestine. Moreover, several TFs 

contributed to the differences in the epithelial cells across organs (Figure 3D). For 

example, PAX9, which played critical roles during fetal development (Mansouri et al., 

1996), was specifically expressed in the epithelial cells of the esophagus. Instead, MYB 

was highly and specifically expressed in epithelial cells of the liver. 

 

Consistent with the previous report (Tabula Muris Consortium, 2018), we found that 

multiple TFs significantly contribute to the variability across different cell types (Figure 

3E), including PBX3, a key homeobox transcription factor for mesodermal commitment 

(Slenter et al., 2018). 

 

The construction of single-cell open chromatin landscape 

To further explore the epigenetic mechanisms underlying the cell-type-specific gene 

expression profile, we isolated nuclei from 14 representative organs (except for ovary, 

testis, bronchus) from the corresponding fetuses. After dissociation, we used a high-

precision single-cell ATAC-seq method (METATAC) for library preparation, followed 

by deep sequencing. In total, we captured 23,520 cells from 30 different sampling sites. 
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After rigorous quality control (QC) for each organ, 21,381 cells were kept for 

downstream analyses (Figure S1C). Averagely, each cell passed QC contained 717,814 

clean reads, 79,146 unique fragments, and 38,916 detected peaks (Figure 1D and Table 

S3), which was much higher than previously reported mammalian tissue data 

(Cusanovich et al., 2018). 

 

In order to identify cell types, we first generated 333,614 accessible chromatin regions. 

Then for each organ, cell types were annotated based on the cell co-embedding of the 

transcriptome landscape and Cicero gene activity scores (Pliner et al., 2018) using 

Seurat (Stuart et al., 2019), and 177 cell clusters were obtained (see Methods). The 

global open chromatin landscape of all cells was in accordance with the transcriptome 

landscape, further confirming the reliable cell typing for METATAC data (Figures 1A, 

4A as well as Figures S6A and S6B). Interestingly, the genomic accessibility in TF 

motifs was strongly correlated with TF RNA expression levels (Figure 4B), which 

suggested that the chromatin accessibility could reflect TF activity veritably (Granja et 

al., 2019). 

 

With the advantage of multiple sampling sites for each organ, we could compare cell 

type composition of different sampling sites. As an example, we showed small intestine, 

which was divided into upper, middle, and lower segments. We detected 19 cell types 

in the small intestine, including epithelial cells, endothelial cells, 4 types of immune 

cells, erythrocyte, 8 types of fibroblasts, glial cells, CACNA1A+ cells and two types of 

smooth muscle cells. Most cell types consisted of cells from all three parts, except for 

Fibro-KCNN3 and CACNA1A+ cells, almost all cells of which belong to the upper part. 

We noticed some types of fibroblasts tended to cluster according to sampling sites, such 

as Fibro-COL14A1 (Figures 4C and 4D). 

 

To unravel the regulatory program underlying cell-type-specific transcriptional 

programs, we inferred activated TFs for each cell type based on TF motif accessibility 

Z scores (Figure 4E). Interestingly, we found that TF motifs significantly more 
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accessible in the epithelial cells were all involved in epithelial-mesenchymal transition 

(EMT), like HNF1A, HNF1B, FOS and JUN family proteins. Previous research in mice 

showed the prevalence of epithelial cells with mesenchymal features during 

organogenesis (Dong et al., 2018), which revealed the mesenchymal features of 

epithelial cells are important for the establishment of proper organ morphology during 

organogenesis. For the endothelial cells, we identified SOX9, SOX13, ETV2, FEV, 

ERG, some of which were known essential for endothelial cell development, like SOX9 

(Akiyama et al., 2004), ETV2 (Oh et al., 2015) and ERG (Birdsey et al., 2008). Two 

smooth muscle cell types have different marker TFs. EBF1 (Jin et al., 2014) and 

MEF2A (Black and Olson, 1998) binding peaks were only accessible in SM-Vascular 

cells but not in SM-Visceral cells, while TEAD (Liu et al., 2014) family binding peaks 

were more accessible in SM-Visceral cells, which may contribute to their different 

functions. Forkhead family motifs showed high TF Z scores in Fibro-COL6A5 and 

Fibro-ZEB1 but not in other fibroblasts, while marker TFs of Fibro-COL14A1 included 

neuron related TFs, such as NEUROD2 and OLIG1. In T cells, RUNX family TFs were 

significantly enriched, which was known to regulate T cell maturation and lineage 

choice (Collins et al., 2009; Egawa et al., 2007). 

 

The architecture of open chromatin profiles across organs 

Based on the comprehensive chromatin accessibility information, we sought to explore 

the similarities and differences of epigenetic state across different organs with single-

cell resolution. We clustered all non-immune cells based on all accessible peaks, results 

were highly consistent with transcriptome, which showed cells of similar epigenome 

but from different organs tended to cluster together (Figure 5A). Interestingly, 

erythrocytes from the kidney, large intestine, lung, and stomach were clustered to other 

cell types from the same organ instead of erythrocytes of other organs, which was 

different from RNA expression profiles, indicating some potential interactions with 

surrounding cells. 

 

To characterize the overall cellular heterogeneity for epithelial, we clustered epithelial 
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cells across diverse tissues. In accordant with RNA expression profiles, epithelial cells 

from the same organ largely clustered together (Figure 5B). For signature genes of 

epithelial cells from different organs, we associated their gene-body and promoter 

peaks with distal regulatory elements based on Cicero co-accessibility scores (Pliner et 

al., 2018), to compare the regulatory relationship across different organs. For instance, 

CLPS is specifically expressed in pancreas epithelial cells, which is a cofactor of 

pancreatic lipase for efficient dietary lipid hydrolysis (Borgstrom and Erlanson, 1973). 

The peak-to-gene connections of CLPS in the pancreas are much more abundant and 

stronger than in other organs (Figure 5C). Similar results were observed for other 

signature genes, such as MUC13, a marker gene of epithelial cells in the small intestine 

(Figure S6C), and KRT15, a marker gene of epithelial cells in the esophagus (Figure 

S6D). Interestingly, although MUC13 was only expressed in epithelial cells of the small 

intestine at this embryonic stage (Figure 3C), the gene locus also showed strong and 

abundant connections in epithelial cells of the pancreas, esophagus, stomach and large 

intestine. Previous research revealed that MUC13 is a cell surface glycoprotein highly 

expressed in epithelial tissues of gastrointestinal and respiratory tracts (Williams et al., 

2001), and is a potential pancreatic cancer diagnostic marker (Khan et al., 2018). The 

open chromatin profiles indicate the regulatory potential for future expression in these 

organs. 

 

Based on TF motif accessibility Z scores (Schep et al., 2017), we inferred TFs that 

regulate the distinguishable expression profiles (Figure 5D). GATA1-TAL1 complex 

showed specific activity in liver epithelial cells. CDX2 exhibited high activity in small 

intestine epithelial cells, but not in large intestine epithelial cells, though it is highly 

expressed in both cell groups (Figure 3D). TP63 was active in both esophagus epithelial 

cells and renal pelvis Epi-Ureter cells. GATA6 showed high activity in epithelial cells 

of the liver, small intestine and stomach. 

 

The correlated gene module and the integrative regulatory circuit 

The high-precision data offered a great chance to delineate correlated gene modules 
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(CGMs) across cell types (Chapman et al., 2020; Chihara et al., 2018). For better 

robustness, we selected 10 cell types with the highest numbers of cells analyzed for 

CGM detection (see Figures S7A-D for more details) and obtained 227 non-redundant 

CGMs with the gene number in each CGM from 10 to 240 (Table S4). Each CGM 

showed distinct correlation profiles across cell types (Figure 6A). Interestingly, more 

than 60% of CGMs showed enriched TFs, which reflected on the contribution of TFs 

on the regulation of co-expressed genes. The enriched protein-protein interactions (PPIs) 

were observed in half of the CGMs, which indicated that the correlated transcription 

was a key process for the synchronization of protein activities. On the other hand, 69.2% 

and 47.6% of CGMs contained enriched GO terms and KEGG pathways, which 

indicated the similar biological functions of correlated genes. Although protein-coding 

genes constitute the majority (more than 90%) of CGMs, there were substantial non-

coding genes in each CGM (Figure 6B), which indicated the similar functions of 

correlated genes with different gene types. Unexpectedly, for most of the CGMs, genes 

were scattered in different chromosomes, expect two CGMs made up of mitochondrial 

genes (Figure 6C), which indicated that correlated genes are merely connected by 

genomic proximity (i.e. cis-effect). Instead, the CGMs with higher correlation were 

more likely to contain common upstream TF regulators, which indicated trans-effect 

was the primary driving force for correlated genes. In addition, high-correlation CGMs 

tended to contain enriched PPIs, GO biological process and KEGG pathways, which 

further highlighted the collaborative mode in the functioning of genes (Figure 6D). 

 

A CGM may show different co-expression levels in different cell types (Figure 6A). We 

assumed that if genes are highly co-expressed in a cell type, the epigenetic state of the 

regulatory genomic elements of these genes should change synchronously in this cell 

type. To verify this hypothesis, we quantified the co-accessibility of two genes using 

the Jaccard index of binary gene activity scores of METATAC data calculated by Cicero 

(Pliner et al., 2018). For 9 of the 10 cell types with more than 500 cells in RNA 

expression profiles (except for ovary Granulosa-R-Al cell type due to the lack of open 

chromatin profile of ovary), we calculated the average RNA expression Spearman 
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correlation coefficients and average ATAC gene activity Jaccard index of all pairs of 

genes within each CGM (Figure 6E), denoted as co-expression index and co-

accessibility index, respectively. In many cases a CGM with high co-accessibility 

showed low co-expression in a cell type, however, almost all CGMs with co-expression 

index higher than 0.2 have co-accessibility index higher than 0.5 in the corresponding 

cell type. We next compared the co-expression and co-accessibility of each gene pair 

within the same CGM for each of the 9 cell types, by setting different co-expression 

threshold to analyze the ratio of highly co-accessible pairs, and vice versa. The ratio of 

highly co-accessible pairs increases as the co-expression threshold (Figure 6F) and 

reaches 100% when the co-expression threshold is larger than 0.8. The ratio of highly 

co-expressed gene pairs also increases as the co-accessibility threshold, however, even 

for totally co-accessible pairs, only less than 20% are highly co-expressed (Figure 6G). 

These results indicated that the co-accessibility of gene regulatory regions is a 

necessary but insufficient condition for co-expression of a pair of genes. 

 

The CGMs ubiquitous in multiple cell types were usually involved in the basic 

biological processes such as metabolism, protein folding and translation. For example, 

MD51, a CGM with 48 genes, was highly correlated in all the 10 cell types such as 

Fibro-FBLN1 in the stomach and Fibro-PAMR1+SOX6+ in the pancreas (Figures 7A 

and 7B). There are many known functionally similar proteins included in this module, 

such as 4 heat shock protein chaperons, 4 phosphatases, 4 Activator Protein-1 (AP-1) 

TFs, 3 transcription initiation factors, 2 GTPase, 2 NF-kB inhibitors and so on. The 

enrichment analysis showed that MD51 was related to stress response and enriched in 

the MAPK signaling pathway (Figure 7C). Moreover, the protein products of the genes 

in MD51 such as FOS and JUN formed a complex (Figure 7D) related to stimulation 

response, which was important for proliferation and differentiation (Angel and Karin, 

1991; Cook et al., 1999). Similar to expression correlation, the genes in MD51 showed 

highly accessibility correlation in both cell types (Figures 7F) and the similar difference 

between the two cell types (Figure S7E). To unravel the TF regulators, we performed 

motif enrichment analysis in the regulatory regions of these genes, defined by Cicero 
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co-accessibility (see Methods), and then calculated the average co-expression 

coefficient with these genes for each TF. Six TFs showed both significant motif 

enrichment within the regulatory regions and high co-expression with these genes 

(Figure 7E). EGR family, C2H2-type zinc-finger TFs, such as EGR1, EGR2 and EGR3 

were identified. EGR1 was involved in stress response under disease condition (Ponti 

et al., 2015; Stuart et al., 2005), EGR2 was reported to suppress the c-Jun NH2-terminal 

protein kinase (JNK)-c-Jun pathway, and EGR3 was an immediate-early growth 

response gene which is induced by mitogenic stimulation (Patwardhan et al., 1991). 

Both EGR2 and EGR3 played vital roles in the immune system (Taefehshokr et al., 

2017). IRF1 displayed a remarkable function in the regulation of cellular responses 

(Kroger et al., 2002). 

 

Meanwhile, the cell-type-specific CGMs usually reflected the function of the 

corresponding cell type. For example, MD117, a CGM contained 87 genes, was shown 

to be correlated only in SM-Visceral cells in the small intestine (Figures 7G and 7H). 

The enrichment analysis showed many smooth muscle-related functions (Figure 7I). In 

the protein level, the genes in MD117 formed the actin and myosin (Figure 7J), which 

was important for muscle contraction (Sweeney and Hammers, 2018). Interestingly, 

although expression correlation showed a highly cell-type-specific pattern, the co-

accessibility patterns of MD117 genes were similar between SM-Visceral cells and 

Fibro-COL6A5 cells in the small intestine (Figure 7L and S7F). Based on the open 

chromatin data, we identified 5 regulatory TFs that were positively correlated with these 

genes and significantly enriched in their regulatory regions in SM-Visceral cells (Figure 

7K). SRF and MEF2C were known essential TFs for myogenesis, and important in 

maintaining the differentiated state of muscle cells (Black and Olson, 1998; Miano, 

2003). PRDM6 was involved in the regulation of vascular smooth muscle cell (VSMC) 

contractile proteins, suppression of differentiation and maintenance of the proliferative 

potential of VSMC (Davis et al., 2006). Inhibition of STAT-5B suppressed thrombin-

induced VSMC growth and motility (Cao et al., 2006). RPBJ, the major mediator of 

Notch signaling, was important for maintaining muscle progenitor cells and generating 
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satellite cells (Vasyutina et al., 2007). TEAD1 played an important role in inhibiting 

smooth-muscle specific gene expression by competing with myocardin binding to SRF 

(Liu et al., 2014). Besides, TFs anti-correlated with module genes, such as SNAI2 and 

MAF, although without significant motif enrichment, were also functionally related to 

this CGM. SNAI2 acts as a transcriptional repressor to prevent the occupancy of 

MYOD on myogenic differentiation-specific regulatory elements (Soleimani et al., 

2012). MAF was a leucine zipper-containing TF acting as a transcriptional activator or 

repressor, and was up-regulated during myogenesis through MYOD (Serria et al., 2003) 

(Figure 7L). Different from the pattern in MD117, the co-expression and co-

accessibility patterns in MD34 were both quite different between different cell types 

(Figures S7G-I), further highlighting the effect of open chromatin stages on the 

correlated gene expression levels within CGMs. 

 

Discussion 

In the mid-gestation, the human fetus undergoes massive organ development and 

maturation. Our high-precision single-cell omics data identified over 200 distinct types 

of cells in all six major systems. Each cell type presents unique gene expression patterns, 

chromatin states as well as biological functions. Comparative analysis on epithelial 

cells among distinct organs showed that, while harboring similar marker genes, these 

cell types presents organ-specific gene/TF-expression patterns, implying that these 

critical molecules potentially regulate the organ-specific functions at their 

microenvironments. 

 

Genes with high inter-tissue expression correlation usually shared similar upstream 

regulators or similar functions (Segal et al., 2004). However, little was known for 

correlated gene module (CGM) profiles within cell types during fetal development 

(Chapman et al., 2020; Chihara et al., 2018). We, for the first time, delineate core CGMs 

and underlying circuits based on the unbiased, high-precision omics data across 

multiple fetal organs. The 227 identified CGMs from ten cell types largely enriched 
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potential functional TFs. Of note, the tissue/cell-type-specific CGMs showed clear 

transcription factor-based gene regulatory networks among the known and unknown 

regulon genes.  

 

With the advantage of our high-precision single-cell transcriptome and open chromatin 

data, we could further combine co-accessible peaks’ motif enrichment and transcription 

factor-gene co-expression information to reveal functional TFs regulating each CGM 

(Figure 7E). Meanwhile, we show that co-accessibility is a necessary but not sufficient 

condition for co-expression (Figures 6F and 6G). The sophisticated symphony-like 

coordination between the epigenetic chromatin status and gene transcription we 

revealed could contribute to the effective regulation of cell-type-specific functions, as 

well as the establishment and maintenance of cell identity during development.  

 

It is evident that GeACT has provided much needed and high-precision dataset as well 

as novel insights much beyond cell typing. We anticipate that GeACT, when expanding 

to all human tissues, normal or diseased, will eventually provide the understanding of 

the human functional genome.  
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STAR★Methods 

KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Equipment and consumables (RNA-seq) 

Biomek FXP Single Arm 

System 

Beckman A31842 

Biomek FXP Dual Arm 

System 

Beckman A31844 

Multipette E3 Eppendorf 4987000010 

C1000 Touch™ Thermal 

Cycler with 96-Well Fast 

Reaction Module 

Bio-Rad 1851196 
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Multi-Mode Microplate 

Readers 

Molecular Devices F3 

PCR-Cooler (0.2 mL) Eppendorf 3881000015 

DNA LoBind tubes 5.0 mL Eppendorf 0030108310 

96 Well LoBind PCR Plates Eppendorf 0030129504 

Aluminum PCR Microplate 

Sealing Film 

Axygen PCR-AS-600 

Microseal 'B' PCR Plate 

Sealing Film 

Bio-Rad MSB1001 

Reagents (RNA-seq) 

SuperScript IV Reverse 

Transcriptase 

Thermo Fisher 18090200 

SUPERase•In™ RNase 

Inhibitor 

ThermoFisher AM2696 

ERCC RNA Spike-In Mix ThermoFisher 4456740 

IGEPAL CA-630 Sigma I8896 

Betaine solution Sigma B0300 

Deoxynucleotide (dNTP) 

Solution Mix 

NEB NO447L 

Exonuclease I (E. coli) NEB M0293L 

Deep Vent® (exo-) DNA 

Polymerase 

NEB M0259L 

TruePrep DNA Library Prep 

Kit 

Vazyme TD501-02 

AMPure XP Beckman A63882 

Equipment and consumables (ATAC-seq) 

Echo 525 Liquid Handler 

System 

Labcyte Echo 525 

96 Well LoBind PCR Plates Eppendorf 0030129512 

Select-A-Size DNA Clean & 

Concentrator 

ZYMO D4080 

DNA Clean & Concentrator 5 ZYMO D4014 

Cell Strainer 40um ThermoFisher FIS22-363-547 

Eppendorf Research Plus 8 

channel pipette 

Eppendorf ES-8-10, ES-12-100 

Centrifuge Eppendorf 5810 R 

Thermomixer Eppendorf 5382000074 

Reagents (ACTA-seq) 

Collagenase, Type II GIBCO Cat#17101015 

Collagenase, Type IV GIBCO Cat#17104019 

DNase I Roche Cat#10104159001 

Liberase (TM) Roche Cat#5401119001 

PDS Kit, Inhibitor Vial (OI- Worthington Cat#LK003182 
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BSA) 

TrypLE GIBCO Cat#12604021 

DMEM/F12 GIBCO Cat#11330032 

Red Blood Cell Lysing Buffer Sigma-Aldrich Cat#R7757 

7-AAD Viability Staining 

Solution 

Biolegend Cat#420403 

DPBS 1x Corning Cat#R21-031-CV 

Triton X-100 Sigma 93443-100ML 

IGEPAL CA630 Sigma I3021-50ML 

Digitonin promega G9441 

Q5 High-Fidelity 2X Master 

Mix 

NEB M0492L 

NEBNext Multiplex Oligos 

for Illumina 

NEB E7500S, E7710S, E7335S, 

E7730S 

Nextera XT DNA Library 

Preparation Kit 

Illumina FC-131-1024 

QIAGEN protease QIAGEN 19155 

Software and Algorithms (RNA-seq) 

Perl; version 5.16.3 The Perl Foundation https://www.perl.org/ 

Gencode; version 26 (Frankish et al., 

2019) 

https://www.gencodegenes.

org/ 

HISAT2; version 2.1.0 (Kim et al., 2015) https://daehwankimlab.gith

ub.io/hisat2/ 

Samtools; version 1.2 (Li et al., 2009) http://www.htslib.org/ 

HTSeq; version 0.11.0 (Anders et al., 2015) https://htseq.readthedocs.io

/en/master/ 

R; version 3.5.1 The R Foundation https://www.r-project.org/ 

Rstudio; version 1.2.5033 RStudio, Inc. https://rstudio.com/ 

Seurat; version 2.3.4 (Butler et al., 2018) https://satijalab.org/seurat/ 

Seurat; version 3.1.4 (Stuart et al., 2019) https://satijalab.org/seurat/ 

topGO; version 2.34.0 (Alexa and 

Rahnenfuhrer, 2018) 

https://bioconductor.org/pa

ckages/3.8/bioc/html/topG

O.html 

dynamicTreeCut; version 

1.63-1 

(Langfelder et al., 

2008) 

https://horvath.genetics.ucl

a.edu/html/CoexpressionNe

twork/BranchCutting/ 

ComplexHeatmap; version 

2.2.0 

(Gu et al., 2016) https://bioconductor.org/pa

ckages/3.8/bioc/html/Comp

lexHeatmap.html 

AnimalTFDB; version 3.0 (Hu et al., 2019) http://bioinfo.life.hust.edu.

cn/AnimalTFDB#!/ 

JASPAR; version 2020 (Fornes et al., 2020) http://jaspar.genereg.net/ 

TRANSFAC®; version 2019.3 GeneXplain GmbH http://genexplain.com/trans
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fac/ 

BEDTools; version 2.26.0 (Quinlan and Hall, 

2010) 

https://bedtools.readthedoc

s.io/en/latest/ 

MEME; version 4.10.0 (Bailey et al., 2009) http://meme-suite.org/ 

clusterProfiler; version 3.10.1 (Yu et al., 2012) https://bioconductor.org/pa

ckages/3.8/bioc/html/cluste

rProfiler.html 

STRINGdb; version 1.22.0 (Szklarczyk et al., 

2015) 

https://www.bioconductor.o

rg/packages/3.8/bioc/html/

STRINGdb.html 

Software and Algorithms (ATAC-seq) 

cutadapt; version 2.1 (Martin, 2011) https://github.com/marcelm

/cutadapt 

Bowtie 2; version 2.3.4.3 (Langmead and 

Salzberg, 2012) 

http://bowtie-

bio.sourceforge.net/bowtie

2/ 

MACS; version 2.2.6 (Zhang et al., 2008) https://github.com/taoliu/M

ACS/ 

R; version 3.6.2 The R Foundation https://www.r-project.org/ 

chromVAR (Schep et al., 2017) https://greenleaflab.github.i

o/chromVAR/ 

Cicero (Pliner et al., 2018) https://cole-trapnell-

lab.github.io/cicero-

release/ 

Seurat; version 3.1.2 (Stuart et al., 2019) https://satijalab.org/seurat/ 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for reagents may be directed to, and will be fulfilled 

by, the Lead Contact, X.S.X. (sunneyxie@pku.edu.cn). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human tissues 

This study was approved by the Reproductive Medicine Ethics Committee of Peking 

University Third Hospital (Research License 2019SZ-004). The pregnant donors 

underwent medical termination of pregnancy due to conditions such as cervical 

insufficiency, infection, eclampsia, inevitable abortion, etc. All the patients voluntarily 

donated the fetal tissues and signed the detailed forms of informed consent. 
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METHOD DETAILS 

Sample Dissection and Single-cell Isolation 

Tissues were immediately processed to the single-cell dissociation after specimen 

resection. 17 organs were included in the study and the protocols of individual organs 

are described below. 

 

Bladder 

The urothelium was detached from the bladder muscle and washed twice with 

resuspension buffer (DMEM + 10% FBS). Then it was minced with dissecting scissors, 

followed by digestion at 37℃, 1000rpm sequentially in digestion buffer (2mg/ml 

collagenase II + collagenase IV in DMEM) for 25min and TrypLE for 5min. Cells were 

subsequently filtered through a 40um strainer. After wash, cells were collected by 

centrifugation and then stained with 1:40 7-AAD before sorting. 

 

Bone marrow 

Bones that excised were firstly rinsed in DMEM/F12 with 10% FBS. The bone marrow 

cells were flushed out by a 10ml syringe containing DMEM/F12 complemented with 

10% FBS. The collagenase II/IV at 2.5mg/ml was then used to flush the bone marrow 

cells again. The aspirated cells were gone through a 40µm filter, centrifuged at 300g 

for 10 minutes. After carefully removed the supernatant, the cells were resuspended in 

3ml PBS and incubated with 15ml of ACK lysis buffer for 3min at room temperature 

to remove the red blood cells twice. In order to excluded nonviable cells, 7-AAD was 

used before the FACS analysis. 

 

Bronchus 

Bronchus was divided into two parts, main bronchi 1-6 and main bronchi 7-12. Tissues 

were washed by DMEM containing 10% FBS, and then transferred into tubes 

containing 1 mL of papain (50 μg/ml). The tubes were incubated at 37℃ for one hour 

and twenty minutes with shaking at 1000 rpm. We pipetted up and down every 5 

minutes to accelerate the process. After digestion, samples were filtered through a 40-
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μm nylon cell strainer, and then centrifuged. The cell pellets were resuspended in 

DMEM (contained 10% FBS), centrifuged at 300g for 5 min. The supernatant was 

removed, 5 μl 7-AAD and 200 μl PBS (plus 0.1% BSA) were added to the cell pellets. 

After incubation at RT for 10 min in a dark place, the cell suspension was mixed with 

a certain amount of PBS (plus 0.1% BSA), depending on the cell number and ready for 

FACS. 

 

Diaphragm 

The diaphragm was dissected, washed and minced in the digestion buffer (2mg/ml 

collagenase II + collagenase IV in DMEM). After that, tissue pieces were digested in a 

thermomixer at 37℃, 1000rpm for 25min and filtered through 40μm strainer. The 

collected cells were then washed twice with resuspension buffer (DMEM + 10% FBS), 

centrifuged and resuspended in 0.1% BSA with 1:40 7-AAD. Following filtration, 

single living cell was sorted into the well of 96-well plate with FACS. 

 

Esophagus 

Esophagus was firstly washed in DMEM which containing 10% FBS. It was then 

transferred to a tube and minced with the scissor. After mechanically dissociation, 1.5ml 

of 2.5mg/ml collagenase II/ IV mixture (GIBCO, 17101015, 17104019), 0.1 mg/ml 

DNase I (Roche, 10104159001) were added. The tube was incubated on a shaker at 37℃ 

for further dissociation. After about 45 minutes, the isolated cells were collected by 

certification (800g, 5min) and subsequently washed once in DMEM/F12 with 10% FBS. 

Cells were filtered through 40μm strainer, pelleted again, and resuspended in 200μl 

PBS (contained 0.1%BSA) with 5μl 7-AAD for dead cell exclusion. After 10 minutes 

for incubation in the dark, the cells were finally resuspended in FACS buffer waiting 

for cell sorting. 

 

Heart 

The sample covered four main zones (Left Atrium, Left Ventricle, Right Atrium, Right 

Ventricle) and two valves (Left and Right). Besides, we also separated interventricular 
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and aorta under a microscope. Tissues were washed with DMEM containing 10% FBS 

and cut into pieces. Tissues were digested into single-cell suspension with 1 mL of 

collagenase Ⅱ/collagenase Ⅳ (2.5 mg/ml) and DNaseⅠ (0.1 mg/ml) at 37℃ for ten 

minutes with shaking at 1000 rpm. We used a 40-μm nylon cell strainer to filter the 

digested tissues, follow by centrifugation at 800g for 5min. DMEM containing 10% 

FBS was added to the cell pellets and the cell suspension was centrifuged again. After 

removal of the supernatant, cell pellets were mixed with 5 μl dye and 100 μl PBS (plus 

0.1 %BSA) and then incubated at RT for 10 min in a dark place. According to cell 

number, PBS (plus 0.1 %BSA) was added to the cell suspension. All heart tissues were 

treated the same way, except aorta needed a longer time than others due to harder 

dissection and less cells. 

 

Kidney 

Kidney was dissected into three parts: renal cortex, renal medulla and renal pelvis. After 

washed in DMEM/F12 which added 10% FBS, these three parts of the kidney were 

minced respectively. 500μg/ml Liberase (TM) (Roche 5401119001) was firstly used to 

digesting the tissues into single cells at 37℃ for 40min, followed by 10 minutes of 

digestion in TryplE with shaking. In assistance with dissociation, pipette the cells 

during the incubation every 5 minutes. The dissociated cells were collected by 

centrifugation (800g, 5min), and further washed by DMEM/F12 added 10% FBS. Cells 

were resuspended and stained with 7-AAD before single-cell sorting. For METATAC, 

the kidney was dissected into three parts, renal cortex, renal medulla and renal pelvis. 

After dissection, large tissues were cut into small pieces by the blade in PBS, and 

transferred to a 40-um cell strainer, then were homogenized with the rubber tip of a 

syringe plunger (5ml) in 4ml PBS. The filtered cells were transferred to a 15ml tube 

and pelleted by centrifuge at 500g for 5min at 4c, then wash once with ice-cold PBS. 

All cells were cryopreserved in 90% fetal bovine serum and 10% DMSO. 

 

Small intestine and Large intestine 

After obtaining small intestine and large intestine from human embryo between 19w to 
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22w, we divided the small intestine into upper, middle and lower parts and the large 

intestine into transverse colon, ascendant colon and descendant colon parts. Then 

washed them by DMEM medium (plus 10% PBS) twice. Striated muscular layer and 

cut up, then added 500ul enzyme mix (2.5mg/ml Collagenase II Invitrogen, 2.5mg/ml 

Collagenase IV Invitrogen and 0.1 mg/ml DNase I dissolved in DMEM medium), 37 

ºC and 1000rpm for 30-50min. Then added 500ml DMEM medium (plus 10% PBS) 

and used 40um Pre-Separation Filters filter the cell suspension. Tissues that were not 

fully digested were redigested with TrypLE. After centrifuging cell suspension at 800g, 

5min, added 200ul PBS (plus 1% BSA) resuspended and added 5ul 7-AAD at room 

temperature for 10min. Then centrifuged cell suspension at 800g, 5min and used 500ul 

PBS (plus 1% BSA) resuspend. 

 

Liver 

We washed the liver sample twice with cold PBS to remove impurities and fat mass, 

then divide the liver into eight functionally independent segments (Segment I-VIII), 

each segment with its blood vessels and bile circulation. Next, each sample was fully 

minced with surgical scissors. We added the digestion buffer (2.5mg/ml II collagenase, 

2.5mg/ml IV collagenase, 0.1 mg/ml DNase I in DMEM) and incubated the mixture at 

37°C with shaking. We checked the proportion of single cells under the microscope 

every 10 minutes and the entire digestion process was up to 90 mins. We stopped the 

digestion procedure when the suspension contained 80-100% single cells. Cells were 

then filtered through a 40 µm strainer, pelleted (800g, 5 minutes), resuspended with 

Red Blood Cell Lysis Buffer, and kept at room temperature for 5 minutes to remove red 

blood cells. We then centrifuged (800g, 5min) and washed the pellet once with PBS. 

Finally, the cells were resuspended in FACS buffer, stained with 7-AAD and sorted by 

FACS. 

 

Lung 

Lung tissues were digested as two parts, lung center and lung peripheral. Both were 

firstly washed by DMEM containing 10% FBS, and then transferred into tubes 
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containing 1mL of collagenase Ⅱ/collagenase Ⅳ (2.5 mg/ml). The tubes were incubated 

at 37℃ for ten minutes with shaking at 1000 rpm for digestion. Then the digested 

tissues were centrifuged to get cell pellets, which were resuspended in DMEM 

containing 10% FBS later. Samples were filtered, centrifuged, and dyed as described in 

bronchus sample collection. We collected 2000 cells for each part. 

 

Testis and Ovary 

Human gonad tissues include testis and ovary were obtained from human embryo from 

19w to 22w. Washed the gonad tissues with DMEM medium (plus 10% PBS) twice and 

cut them up. Then added 600ul Accutase Cell Detachment Solution (Millipore 

#SCR005) at 37 ºC, 1000rpm for 15min. then used 40um Pre-Separation Filters to filter 

the cell suspension. After centrifuging cell suspension at 800g, 5min, added 200ul PBS 

(plus 1% BSA) resuspended and added 10ul KIT FACS antibody at 4 ºC for 30min. 

Then centrifuged cell suspension at 800g, 5min and used 200ul PBS (plus 1% BSA) 

resuspend. After that added 5ul 7-AAD at room temperature for 10min and centrifuged 

at 800g, 5min. Then used 500ul PBS (plus 1% BSA) resuspend. 

 

Pancreas 

Pancreas was processed to single-cell isolation immediately after the separation from 

the embryo. DMEM/F12 with 10% FBS was used to wash the pancreas for at least three 

times. The pancreas was sequentially minced using scissors and digested with 

dissociation buffer which containing collagenase Type II/IV (GIBCO, 17101015, 

17104019) mixture and DNase I (Roche, 10104159001). After 30 minutes of incubation 

at 37℃, the digested cells were pelleted (800g, 5 minutes), washed in DMEM/F12 with 

10% FBS once, passed through 40μm strainer, pelleted again. The cells were stained 

with 7-AAD for the assessment of cells’ viability before sorting. 

 

Spleen 

Spleen was cut into pieces and ground through a 40um strainer with syringe plunger in 

resuspension buffer (DMEM + 10% FBS). After centrifugation, cells were treated with 
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ACK lysis buffer for 5min at 25℃ twice, centrifuged, and washed twice with 

resuspension buffer. Cells were stained with 1:40 7-AAD subsequently for FACS 

sorting. 

 

Stomach 

After removing the muscle layer with tweezers under the stereomicroscope, the 

stomach sample was divided into three parts, namely, fundus, body and antrum. Next, 

we stripped the fatty layer and blood vessels of the sample, washed with cold PBS 2-3 

times to remove mucus, minced in a centrifuge tube and added with digestion buffer 

(2.5mg/ml type II/ IV collagenase, 0.1 mg/ml DNase I, in DMEM). After digestion 30 

to 50mins at 37℃ with multiple pipetting to promote digestion procedure, cells were 

filtered through a 40 µm strainer, centrifuged at 800g for 5min, washed once with 

resuspension buffer (DMEM + 10% FBS) and pelleted again (800g, 5min). Finally, 

cells were resuspended with PBS containing 0.1% BSA and stained with 7-AAD. 

 

Thymus 

The thymus samples were crushed on a 100 µm strainer. Cells were centrifuged (500g, 

5 minutes), digested with digestion buffer (2.5mg/ml II collagenase, 2.5mg/ml IV 

collagenase, 0.1 mg/ml DNase I, in DMEM) and incubated at 37°C for 30 minutes with 

agitation. The digestions quenched with resuspension buffer (DMEM + 10% FBS). 

Cells were pelleted (800g, 5 minutes), then resuspended in FACS buffer, and stained 

with 7-AAD immediately before sorting. 

 

Single-cell RNA-seq experiment 

RNA-Seq was performed by the method of MALBAC-DT (Chapman et al., 2020). To 

improve throughput and reproducibility, an automated workflow was developed by 

using the Biomek FXP Workstation. A single-arm system with multichannel pipettor 

was used for RNA amplification and a dual-arm system with multichannel pipettor and 

Span-8 pipettors was used for sequencing library preparation. During RNA 

amplification, plates were kept on PCR-Cooler while transferring liquid and vortexed 
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and briefly centrifuged after all transferring steps. If the plate will be stored at -80℃, a 

foil film was used for sealing; otherwise, an adhesive film was used. In this study, the 

96 RT3-An primers with a distinct primer corresponding to each well were used to 

eliminate the possibility of cross-contamination between wells. 

 

First, 96-well single cell capture plates containing cell lysis buffer were prepared. Cell 

lysis buffer of 2500 reactions consisting of 612.5uL H2O, 1000uL 5x SSIV buffer, 

250uL 10% ICA-630, 2000uL 5M betaine, 125uL SUPERase•In RNase Inhibitor, 

500uL 10mM dNTP mix and 12.5 uL 8x104 diluted ERCC RNA Spike-In mix were 

prepared in a 5mL Eppendorf tube and distributed to three 8-strip tubes with 187uL in 

each well manually. Next, 45uL of the mix was transferred to each well of a 96-well 

master mix plate and then a transfer of 5uL 50uM barcoded RT-An primer from the 

primer storage plate to the master mix plate by the robot. After that, 2ul lysis buffer was 

distributed to each well of 24 capture plates from the master mix plate automatically 

and then stored at -80℃. Before cell sorting, capture plates were thawed at 4℃ and 

spun down for 15 seconds to collect the lysis buffer to the bottom of the well. After cell 

sorting, plates were spun down for another 15 seconds to ensure cell immersed into the 

lysis buffer and immediately stored at -80℃ until ready for amplification. 

 

To perform reverse transcription, captured plates were incubated at 72°C for 3 minutes 

and hold at 4℃ to facilitate the open of RNA secondary structure and annealing of RT-

An primer. RT mix of 2230 reactions consisting of 1807uL H2O, 892uL 5x SSIV buffer, 

446uL 100mM DTT, 335uL SUPERase•In RNase Inhibitor, 536uL 100mM MgSO4 

and 446uL SuperScript IV were prepared in a 5mL Eppendorf tube and distributed to 

three 8-strip tubes with 185uL in each well manually. Next, 45uL of RT mix was 

transferred to each well of a 96-well master mix plate by robot and 2ul RT mix were 

distributed to each well of 20 captured plates automatically. Incubate plates at 55°C for 

10minutes to synthesize first strand cDNA. 

 

After reverse transcription, excess RT primers were digested by exonuclease I, RT-Bn 
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primers were added for an indication of digestion efficiency in this step. Exonuclease 

mix of 2230 reactions consisting of 2230uL H2O, 446uL ExoI buffer, 1338uL ExoI 

were prepared in a 5mL Eppendorf tube and distributed to three 8-strip tubes with 

167uL in each well manually. Next, 41.4uL of the mix was transferred to each well of 

a 96-well master mix plate and then a transfer of 4.6uL 50uM barcoded RT-Bn primer 

from the primer storage plate to the master mix plate by the robot. After that, 2ul 

exonuclease mix was distributed to each well of 20 sample plates automatically and 

incubate plates at 37°C for 30 minutes to digest excess primers then at 80°C for 20 

minutes to inactive exonuclease I. 

 

For cDNA amplification, PCR master mix of 2000 reactions consisting of 38.48mL 

H2O,6mL ThermoPol buffer, 800uL 10mM dNTP mix, 320uL 100mM MgSO4, 200uL 

200uM GAT-7N, 200uL 200uM GAT-COM and 2000uL Deep Vent (exo-)) were 

prepared in a 50mL tube and 250uL were added to each well of a 96-well master mix 

plate with an Eppendorf Multipette® E3 pipetter . Then, 24ul PCR master mix was 

distributed to each well of 20 sample plates from the master mix plate using the robot. 

PCR amplification conditions were as described in MALBAC-DT protocol but the 

cycles for exponential PCR were decreased from 18 to 15. 

Finally, 2uL 10uM Tru2-G-RT primer was added to each well of the sample plates by 

robot and running an additional 5 cycles of PCR steps according to MALBAC-DT 

protocol. 

 

Before sequencing library preparation, 5uL from each well of a sample plate was 

pooling to a 1.5mL tube automatically by Span-8 pipettors for one library preparation. 

After pooling, 50ul from the pooled samples were transferred to a 96-well plate and 

purified using 0.8x Ampure Beads. Next, the purified products were quantified using 

FilterMax F3 plate reader and 50ng DNA input was used for library preparation. 

Illumina sequencing adapters were added by tagmentation following manufacturer's 

instructions of Vazyme TruePrep DNA Library Prep Kit. The PCR cycling conditions 

were as follows: 72℃ for 5 min; 98℃ for 30 sec; 12 cycles of 98℃ 10 sec,63℃ 30 sec, 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 13, 2020. . https://doi.org/10.1101/2020.04.12.038000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/


72℃ 1 min; 72℃ for 5min. During PCR steps, Illumina Truseq read2 (Tru-R2) primers 

and Nextera 5XX primers were used to selectively amplify the 3’ ends of transcripts 

containing cell barcodes and UMIs. Paired-end sequencing was performed on an 

Illumina NovaSeq 6000 using 2 x150bp reads with a custom sequencing primer for 

read2. For a specific S4 run, 48 samples were sequenced with 12 samples multiplexed 

in each lane. 

 

Single-cell ATAC-seq experiment 

Nuclei extraction 

Quick thaw two tubes of each tissue cells at 37℃ water bath, then wash once with ice-

cold PBS, count cell number, aliquot 50,000 to 1.5ml PCR tube (Eppendorf), 

centrifugation at 500xg for 5min at 4℃ with a swing bucket centrifuge. Nuclei were 

extracted with Omni-ATAC protocol (Corces et al., 2017), add 50ul ice-cold cell lysis 

buffer (10mM Tris, ph7.5, 10mM NaCl, 3mM MgCl2, 0.01% digitonin, 0.1 IGEPAL 

CA630, 0.1% Tween 20), pipette to mix thoroughly, put on ice for 3min, then add 100ul 

ice-cold wash buffer (10mM Tris, ph7.5, 10mM NaCl, 3mM MgCl2, 0.1% Tween 20), 

pelleted by centrifuge at 500xg for 10min at 4℃, wash once with 100ul ice-cold wash 

buffer, pelleted nuclei. 

 

Assemble META transposome 

We use META transposome (Tan et al., 2018) in the transposition step, to avoid half 

loss as compared to the Nextera transposome. One strand of the transposon was 5′-

/Phos/-CTGTCTCTTATACACATCT-3′, while the other strand was in the form of 5′-

[META tag]-AGATGTGTATAAGAGACAG-3′. Each of the oligos (Invitrogen, 

purification: PAGE) was dissolved in 0.1 X TE to a final concentration of 100 uM. For 

each of the n = 16 META tags, two strands were annealed at a final concentration of 5 

uM each. The 16 annealed transposons were then pooled with equal volumes. The 

transposase was purified after expression from the pTXB1-Tn5 plasmid (Addgene). 

Transposome was assembled at a final concentration of 1.25 uM dimer (2.5 uM 

monomer). 
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In this work, we use META with n=16 tags: 

CGAGCGCATTAA 

AGCCCGGTTATA 

TCGGCACCAATA 

GCCTGTGGATTA 

GCGACCCTTTTA 

GCATGCGGTAAT 

GCGTTGCCATAT 

GGCCGCATTTAT 

ACCGCCTCTATT 

CCGTGCCAAAAT 

TCTCCGGGAATT 

CCGCGCTTATTT 

CTGAGCTCGTTTT 

 

Transposition 

Resuspend pellet in 25ul transposition mix (12.5ul 2x TD buffer from Nextera kit, 10ul 

PBS ph7.5, 0.25ul 1% Digitonin, 0.25ul 10% Tween, 2ul 1.25uM META transposome), 

pipette to mix thoroughly, then incubate in a thermomixer at 1000rpm for 30min at 

37℃. After transposition, add 25ul 2 x STOP buffer (40mM EDTA, 10mM Tris pH 8.5, 

1mM spermidine), incubate on ice for 15min to stop transposition. 

 

FACS single nuclei and amplification 

For FACS, resuspend transposed cells in 1.5ml 0.5% BSA in PBS, then sorted single 

cells into 96-well plates containing 1ul lysis buffer (10mM Tris pH 8.0, 20mM NaCl, 

1mM EDTA, 0.1% SDS, 500nM Carrier ssDNA, 60ug/ml QIAGEN protease) with a 

BD flow cytometer (BD, AriaII). Events were first gated on FSC and SSC as “cells”, 

and then on FSC and trigger pulse width as “singlets”. The sorting mode was “1.0 drop 

single”. After sorting, plates were sealed with an aluminum sealing film (PCR-AS-600, 

Axygen), centrifugation at 2800xg with swing bucket centrifuge for 1min at 4℃ to 
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ensure nuclei in lysis buffer, then store at -80℃ until ready for PCR amplification. 

 

We thawed plates, change with an adhesive sealing film (MSB1001, bio-rad), then 

incubate at 65℃ for 15min to release Tn5 from DNA on a thermocycler, then add 1ul 

3% Triton X-100 to quench SDS. For amplification, first add 4ul preamp mix (3ul 2x 

high fidelity Q5 Master mix, 0.192ul 50uM META16 primer mix, 0.05ul 100mM 

MgCl2, 0.758ul H2O) to each well, cycling conditions were as follows 

• 72℃, 5min, 

• 98℃, 30s 

• 16 cycles: 

98℃, 10s 

62℃, 30s 

72℃, 1min 

• 72℃, 5min 

• hold at 4℃ 

 

After preamplification, add 0.225ul 50uM indexed META16-ADP1 primer to each 

column, and 0.225ul 50uM META16-ADP2 primer to each row to incorporate well-

specific cell barcodes, cycling conditions were as follows 

• 98℃, 30s 

• 5 cycles: 

98℃, 10s 

62℃, 30s 

72℃, 1min 

• 72℃, 5min 

• hold at 4℃ 

After amplification, pool a whole plate, purify with DNA Clean & Concentrator-5 

column (ZYMO). 

META16 primer mix sequence in the form of 5’-[META tag]- 

AGATGTGTATAAG 
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META16-ADP1 primer design in the form of 5’-

CTTTCCCTACACGACGCTCTT CCGATCT-[Cell Barcode]-[META Tag]-

AGATGTGTATAAG. META16-ADP2 primers design in the form of 5’-

GAGTTCAGACGTGTGCTCTTCCGATCT-[Cell Barcode]-[META Tag]-

AGATGTGTATAAG. 

ADP1 cell barcodes as follows 

GATATG, ATACG, CCGTCTG, TGCG, GAACTCG, ATGTAG, CCCG, TGTAG, 

GAGTAAG, ATCG, CCTAG, TGACCG 

ADP2 cell barcodes as follows 

 ACTCTA, AGAGCAT, GGTATG, TCGATGC, CTACTAG, TATGCA, 

CACACGA, GTCGAT 

 All liquid transfer steps were handled by a liquid handler platform Echo525. 

Detailed calibration for each transfer steps is as follows: 

 Cell lysis buffer: 384PP_AQ_BP 

 3% Triton X-100: 384PP_AQ_SPHigh 

 PCR master mix: 384PP_AQ_BP 

 Primer mix: 384PP_AQ_BP 

 

Library preparation and sequencing 

Each plate takes 120ng (9ul template) for library preparation, the library was performed 

by addition of 21ul PCR mix (15ul 2x Q5 Master mix, 3ul NEBNext index primer i5, 

and 3ul NEBNext index primer i7, 0.05ul 100mM MgCl2), here we use a unique dual 

index combination for each plate to reduce index hopping. Then incubate as 98℃, 30s, 

2 cycles [98℃, 10s, 68℃, 30s, 72℃, 1min], note only 2 cycles to avoid cell barcode 

switching in case of any remaining cell barcode primers. Finally, the library 

concentration was determined by Kapa qPCR master mix. For sequencing, the 

equimolar libraries from each 96-well plate were pooled and sequenced on two runs of 

a NovaSeq 6000 (Illumina). 

 

Single-cell RNA-seq data analysis 
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Data pre-processing 

First, the raw data for each 96-well plate was demultiplexed according to the cell 

barcodes in the R2 reads, where no mismatch was allowed. Then, the demultiplexed R2 

reads which contained less than 3 bases inconsistent to designed UMI patterns and 

contained at least 4 T in the 5bp downstream regions of UMIs were recognized, and the 

corresponding R1 reads were extracted. For the remained R1 reads, the polyA 

sequences were trimmed, followed by filtering for high-quality reads with the following 

criteria: 1) at least 40bp; 2) more than half of the bases showing the sequence quality 

scores greater than 38. 3) less than 10% of bases showing N. 

 

Reads mapping and gene expression calculation 

The processed R1 reads were mapped to the human genome (GRCh38.p10) using 

HISAT2 (Kim et al., 2015) with the option of “--new-summary”, where the genome and 

gene annotation files (primary assembly) were download from Gencode (Frankish et 

al., 2019). The reads mapped to multiple genomic positions were removed according to 

the “NH:i” tags in the BAM files using Samtools (Li et al., 2009). The remained reads 

were assigned to genes using htseq-count in HTSeq (Anders et al., 2015) with the 

default options. Then for each gene, the reads with similar UMIs (no more than 2 

hamming distance) were collapsed to remove redundant reads. Finally, the UMI count 

for each gene was calculated to generate the gene expression matrix. 

 

Cell and gene filtering 

Several criteria were used for cell filtering in each organ: 1) the ratio of primer A in all 

primers (A and B) >= 0.9; 2) clean reads number >= 0.4 million; 3) reads mapping 

ratio >= 0.6; 4) detected gene number > 1000; 5) UMI number > 3000. 6) mitochondrial 

gene UMI ratio < 0.15; 7) ERCC ratio < 0.25. To filter out doublets, the cells showing 

extremely high gene number and UMI number were removed. In addition, a generalized 

additive model (GAM) was fit for UMI number (y) against gene number (x) using gam 

in mgcv. The cells showing the observed UMI number great than 2-fold of the expected 

UMI number were removed. After cell filtering, the genes were filtered using two 
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strategies: 1) in each organ, the genes expressed in less than 10 cells were removed, 

which produced the files used for analysis in each organ. 2) the gene expression 

matrices in each organ were merged and then the genes expressed in less than 10 cells 

were removed, which produced the file (47,468 genes by 31,208 cells) used for analysis 

across 17 organs. 

 

Cell type identification 

For each organ, the gene expression matrix after filtering was used for cell clustering 

using Seurat (Butler et al., 2018). Specifically, the highly variable genes were identified 

using FindVariableGenes with the options of “mean.function = ExpMean, 

dispersion.function = LogVMR, x.low.cutoff = 0.25, x.high.cutoff = 5, y.cutoff = 0.5”, 

followed by PCA dimension reduction. The significant dimensions with the p-value less 

than 0.001 were used for cell clustering. The resolution was optimized to produce 

reliable clusters according to the t-SNE plot. To avoid over-clustering, the similar cell 

clusters were merged using ValidateClusters with the options of “top.genes = 30, 

min.connectivity = 0.01, acc.cutoff = 0.85”. The differentially expressed genes 

(signature genes) in each cell cluster were identified using FindMarkers, and only the 

signature genes with power >= 0.4 and fold change >= 2 were selected. Based on 

signature genes, cell identities were assigned to each cell cluster. Gene ontology 

enrichment analysis was performed using runTest (Fisher's exact test) in topGO (Alexa 

and Rahnenfuhrer, 2018), and only the terms with FDR < 0.05 were selected. 

 

The comparison between fetal and adult cells 

The single-cell RNA-seq data for the 6 organs (kidney, large intestine, liver, lung, 

spleen and testis) in the human adult was downloaded from Single Cell Portal 

(https://singlecell.broadinstitute.org/single_cell) and literature (Guo et al., 2018; 

Kinchen et al., 2018; MacParland et al., 2018; Madissoon et al., 2019; Stewart et al., 

2019). The cells with at least 500 detected genes were used for analysis. For each organ, 

the adult cells were mapped into the fetal cells using Cell Blast (Cao et al., 2019b) with 

the cutoff of 0.2 for cell type identification. To remove the batch effect, the expression 
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matrix of fetal and adult cells was corrected for each organ using Seurat (Stuart et al., 

2019). To compare the heterogeneity between fetal and adult cells, pairwise Spearman 

correlation was calculated between the cells within each organ and each cell group 

(epithelial cells, endothelial cells, fibroblasts and immune cells) for fetal and adult data, 

respectively. To compare the distance between fetal and adult cells across cell groups, 

pairwise Spearman correlation was calculated between the fetal cells and the adult cells 

within each organ and each cell group. 

 

Cross-organ analysis 

To perform hierarchy clustering across organs, the gene expression matrix containing 

all the 17 organs was normalized into count per million (CPM). The cell types which 

belonged to the same identity were grouped. For example, all the epithelial cells in the 

kidney were grouped into kidney epithelial cells. For each cell group in each organ, the 

average CPM was calculated. Then, the pairwise Pearson correlation was calculated 

between cell types. Hierarchy clustering (average linkage) was performed based on the 

distances (1 - correlation). 

 

To identify the putative TFs playing roles in cell type commitment, the CPM for TFs 

were extracted from the gene expression matrix containing all the 17 organs. Then 

random forest classification was performed using randomForest in randomForest with 

the option of “importance = T”. The TFs were decreasingly ordered by the mean 

decrease in Gini index. 

 

Correlated gene module (CGM) detection and annotation 

To estimate the required cell number for CGM analysis, the most abundant cell type 

(Fibro-ADAM28) was randomly subsampled into 100, 300, 500, ..., 1300, 1500, 1700 

cells, respectively. For each group of sampled cells, the gene expression was normalized 

into count per million (CPM) and pairwise gene correlation (Spearman) was calculated 

to generate the background distribution of gene correlation. The 95% quantile of 

correlation showed robust for the groups with at least 500 cells, thus 500 was used as 
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the required cell number. 

 

For each of the 10 cell types passing this requirement, 500 cells were randomly 

subsampled for gene correlation calculation as mentioned above. Hierarchy clustering 

(average linkage) was performed based on the distances (1 - correlation) and CGMs 

were detected using cutreeDynamic in dynamicTreeCut (Langfelder et al., 2008) with 

the options of “cutHeight = 0.99, minClusterSize = 10, method = "tree", deepSplit = F”, 

and only the CGMs with the average correlation >= the 95% quantile of background 

correlation (0.088) were selected. Then, the CGMs in different cell types were merged. 

To remove redundancy, the pair of similar CGMs (the ratio of common genes number 

to union genes number > 0.6) was replaced by their common genes. 

 

To calculate the gene type composition for each CGM, the gene type was extracted 

from the gene annotation file mentioned in reads mapping. The human TF list was 

downloaded from Animal TFDB v3.0 (Hu et al., 2019). 

 

To perform enrichment analysis for the genes in each of the 227 CGMs with high speed, 

three types of datasets were built: 

1) The dataset for TF enrichment. 

The binding motifs were downloaded from JASPAR (CORE) and TRANSFAC®, 

respectively. The human motifs were extracted and only the ones in the TF list 

mentioned above were selected. For the TFs with more than one motif, only the 

non-variants or the recommended one was chosen according to the motif annotation 

information. For the TFs existing in both JASPAR and TRANSFAC®, only the one 

in the former was chosen. Then, the gene promoter (upstream -2kb of TSS ~ 

downstream of TSS of genes) sequences were extracted using BEDTools (Quinlan 

and Hall, 2010), followed by the Markov model estimation using fasta-get-markov 

in MEME (Bailey et al., 2009). After that, TF binding sites were identified using 

FIMO (Grant et al., 2011) in MEME with the options of “--parse-genomic-coord --

thresh 1e-5 --max-stored-scores 500000”. The genes whose promoter regions 
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containing TFBSs were assigned to the target genes of the corresponding TFs. 

2) The dataset for gene ontology (GO) enrichment 

The gene ontology annotation file in the human (goa_human.gaf.gz with the time 

stamp of 2019-10-09) was downloaded from The Gene Ontology Consortium (The 

Gene Ontology Consortium, 2019). The terms in the biological process aspect were 

extracted. 

3) The dataset for KEGG pathway enrichment 

The KEGG pathway files in the human (with the time stamp of 2019-12-18) were 

downloaded from the KEGG database (Kanehisa et al., 2017). 

 

These three datasets were then processed and used for gene enrichment analysis using 

enricher in clusterProfiler (Yu et al., 2012) with the options of “pAdjustMethod = "BH", 

minGSSize = 1, maxGSSize = Inf, pvalueCutoff = 0.05”, and the results with the 

adjusted p-value less than 0.05 were selected. 

 

In addition, the protein-protein interaction (PPI) enrichment was performed using 

STRINGdb (Szklarczyk et al., 2015), where the PPI data was imported using 

STRINGdb$new with the options of “version = "10", species = 9606, score_threshold 

= 400” and enrichment test was performed using STRINGdb$get_ppi_enrichment. The 

results with the p-value less than 0.05 were selected. 

 

Single-cell ATAC-seq data analysis 

Data pre-processing and quality control 

First, the raw data for each 96-well plate was demultiplexed according to the cell 

barcodes in the R1 and R2 reads, where at most 1 mismatch was allowed. Then, reads 

were trimmed using cutadapt (Martin, 2011) with the option “-e 0.22” to remove cell 

barcodes, META tags and transposon sequences at both 5’ and 3’ ends. The trimmed 

paired-end reads were aligned to the human genome (GRCh38.p10) using Bowtie2 

(Langmead and Salzberg, 2012) with “-X 2000 --local --mm --no-discordant --no-

mixed” parameters. PCR duplicates and contaminated reads were subsequently 
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removed for reads that aligned to the autosome and X chromosome with mapping 

quality >= 20 using a custom python script based on the coordinates and META tags. 

The cell filtering was based on the following criteria: 1) number of reads >= 100k; 2) 

number of unique fragments >= 10k and <= 600k; 3) ratio of reads aligned to the nuclear 

genome >= 0.85; 4) ratio of reads aligned to the mitochondria <= 0.1. 

 

Peak calling and feature matrix 

The unique fragments of all cells passing quality control from 14 organs were merged 

together. Accessible peaks were called on the merged files using macs2 callpeak 

command (Zhang et al., 2008) with “-f BEDPE --nomodel --nolambda --SPMR --keep-

dup all” as options. Peaks overlapped with the ENCODE blacklist were removed. Peaks 

with size longer than 2kb were broke into ~1kb windows. 333,614 accessible peaks 

were identified. For each cell, the accessibility of each peak was quantified by the count 

of Tn5 insertion which occurred within this peak to construct the feature matrix. 

 

TF binding site identification 

We downloaded human TF motif position weight matrices from JASPAR core database 

(2018) and TRANSFAC®, respectively. The peak sequences were extracted using 

BEDTools (Quinlan and Hall, 2010), and the motif binding sites on each accessible 

peaks were identified using FIMO with parameters “--thresh 0.0001 --max-stored-

scores 500000 --max-strand”. 

 

TF motif accessibility score 

We used chromVAR (Schep et al., 2017) to calculate the global TF motif accessibility 

deviations. The peak-to-cell feature matrix and genomic coordinates were input to 

“SummarizedExperiment” function to construct the object. “addGCBias” function was 

applied to compute the GC content for peaks. The the JASPAR 2018 core database was 

got using “getMatrixSet” function with “‘species’ = 9606, ‘all_versions’ = T” as options, 

and mapped to hg38 genome by “matchMotifs” function with option “genome = 

BSgenome.Hsapiens.UCSC.hg38”. The TF motif accessibility deviations were 
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calculated using “computeDeviations” with default parameters based on the motif 

annotation and the “SummarizedExperiment” object. 

 

Co-accessibility and gene activity scores 

We used R package Cicero (Pliner et al., 2018) to estimate gene activities from 

METATAC data. In brief, the sparse binary cell-by-peak matrix of each organ was used 

to create a cell_data_set. After “detect_genes” and “estimate_size_factors”, we 

performed Latent Semantic Indexing (LSI) and reduced dimensions by UMAP. The 

UMAP coordinates were input to “make_cicero_cds” function, and then “run_cicero” 

to get co-accessibility scores between peaks with default parameter “k = 50”. 

 

After got the co-accessibility scores between peaks, we used “annotate_cds_by_site” 

function to annotate all peaks located in the gene body +2kb upstream of TSS, and then 

used “build_gene_activity_matrix” with default parameter “dist_thresh = 250000, 

coaccess_cutoff = 0.25” to calculate gene activity scores for each gene in each cell. 

 

Cell type identification using Seurat’s canonical correlation analysis 

We applied Seurat’s scATAC-seq + scRNA-seq integration pipeline to match the 

cellular states across two modalities, and transfer cell labels from transcriptomic data 

to chromatin accessibility data (Stuart et al., 2019). For each organ, scATAC-seq gene 

activity score matrix and annotated gene expression matrix were normalized and scaled, 

and then input to “FindTransferAnchors” function with “reduction = ‘cca’” as the 

option to generate anchor set between two datasets. This anchor set was input to 

“TransferData” function, weighted by the LSI reduced scATAC-seq peak-to-cell matrix, 

to predict cell identity of scATAC-seq cells. 

 

Cross-organ analysis 

The peak-to-gene count matrix and the gene activity score matrix containing 14 organs 

were log-normalized and scaled using Seurat “NormalizeData” and “ScaleData” 

functions. The cell types which belonged to the same identity were grouped, as 
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mentioned in “Single-cell RNA-seq data analysis” part. For each cell group in each 

organ, the average scaled accessibility of each peak and average scaled gene activity 

score of each gene were calculated. We also calculated the Z scores for the TF motif 

accessibility deviation matrix of 14 organs, and then took the average for each cell 

group in each organ. 

 

To compare the gene expressions and gene activity scores, we computed the Spearman 

correlation between average scaled expressions and average scaled gene activity scores 

for common cell types of both data. 

 

To compare the TF expressions and TF motif accessibility scores, we computed the 

Spearman correlation between average scaled TF expression and average scaled TF 

motif accessibility scores for common cell types of both data. 

 

To perform hierarchy clustering across organs, the pairwise Pearson of average scaled 

peak accessibilities correlation was calculated between cell types. Hierarchy clustering 

(complete linkage) was performed based on the distances (1 - correlation). 

 

Regulatory regions for each gene 

We re-calculated the co-accessibility and gene activity scores using Cicero for each cell 

type with more than 100 cells, to get cell-type-specific co-accessibility scores. For each 

gene in each cell type, the regulatory regions included the peaks located in the gene 

body +2kb upstream of TSS, and co-accessible peaks with co-accessibility score >= 

0.25 and within 25kb. 

 

Comparison between co-expression and co-accessibility 

The co-expression index of two genes is defined as the Spearman correlation coefficient 

of their normalized gene expressions. The co-accessibility index of two genes is defined 

as the Jaccard index of their binary gene activity scores, which is the number of cells 

both gene activity score > 0, divided by the number of cells at least one of the two genes 
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with activity score > 0. 

 

The co-expression/co-accessibility index of a CGM is defined as the average co-

expression/co-accessibility indexes of all gene pairs within the corresponding CGM, 

respectively. 

 

Infer functional TFs for CGMs 

For each CGM, we combined all regulatory peaks of its genes, and computed motif 

enrichment false discovery rate (FDR) using the hypergeometric test for JASPAR and 

TRANSFAC® motifs. For TF with multiple motifs, we only kept the one with minimum 

FDR. 

 

On the other hand, for each CGM and each TF, we calculated the average co-expression 

index of TF and each gene. 

 

Data and Code Availability 

DATA RESOURCES: The accession number of the raw data files for the RNA-seq and 

ATAC-seq experiment reported in this paper is X. To take full advantage of the resource 

in the GeACT project, we made our data available for further exploration via an 

interactive website at http://geact.gao-lab.org. 

 

SOFTWARE: All software is freely or commercially available and is listed in the STAR 

Methods description and Key Resources Table. The code is accessible at 

https://github.com/gao-lab/GeACT. 

 

Supplemental Information 

Supplemental Information includes seven figures and four tables and can be found with 

this article online. 
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Figure Legends 

 

Figure 1. The overview of GeACT project. (A) The workflow of single-cell data 

production and analysis. (B) Upper panel: The t-SNE plot of all 31,208 cells from 

single-cell RNA-seq., Lower panel: The t-SNE plot of all 21,381 cells from single-cell 

ATAC-seq. Each point represents a cell, colored by organ. The clusters are annotated 

with the primary cell type. (C) The heatmap shows the Spearman correlation of gene 

expression for the CGMs genes in the stomach Fibro-ADAM28 cells. (D) Co-

expression and co-accessibility network for the MD173 genes of the stomach Fibro-

ADAM28 cells. Each node represents a gene. Red lines: co-expression index > 0.1 and 

co-accessibility index > 0.5. Blue lines: co-expression index > 0.1 only. Grey lines: co-

accessibility index > 0.5 only. 

 

Figure 2. The single-cell transcriptome landscape in 17 organs. (A) The heatmap 

shows the signature genes in each cell type. Each row represents a signature gene and 

each column represents a cell. For each cell type, five cells were randomly selected for 

show. (B) The t-SNE plot of the marker genes of epithelial cells (EPCAM), endothelial 

cells (PECAM1), fibroblasts (COL1A1) and immune cells (PTPRC). The color changed 

from grey to blue as the gene expression levels increase. (C) The bar plot means the 

average of pairwise Spearman correlation between the cells within each organ and cell 

group for fetal and adult cells, respectively. The error bar means the standard derivation 

(Wilcoxon rank-sum tests, *** means p-value < 0.001). (D) The violin plot means the 

pairwise Spearman correlation between the fetal and adult cells within each organ and 

cell group (Wilcoxon rank-sum tests, *** means p-value < 0.001 between the 

corresponding cell group and any other groups). 

 

Figure 3. The architecture of expression profiles across cell types. (A) The hierarchy 

clustering plots of gene expression for non-immune cell types based on all the expressed 

genes, colored by cell types. (B) The t-SNE plot shows the epithelial cells in different 

organs. (C) The dot plot shows the signature genes of the epithelial cells in different 

organs. (D) The violin plot shows the signature TFs of the epithelial cells in different 

organs. (E) The dot plot shows the TFs classifying all cell types, ordered by mean Gini 

importance of the random-forest model. Only the top 10 significant TFs are shown. 

 

Figure 4. The single-cell open chromatin landscape in 14 organs. (A) Heatmap of 

Spearman correlations between average gene expressions and gene activity scores for 

common cell groups of scRNA-seq and scATAC-seq profiles. Clustered by major cell 

types. (B) Heatmap of Spearman correlations between average TF expressions and TF 

activities defined by chromVAR deviations. Clustered by major cell types. Epithelial 

cells, endothelial cells, immune cells and fibroblasts are highlighted. (C-E) The single-

cell chromatin accessibility landscape in the small intestine. (C) The t-SNE plot shows 

the cells colored by sampling positions. (D) The same as (C), colored by primary cell 

type annotations. (E) Heatmap of marker TF motif scaled accessibilities for each cell 

type in the small intestine. 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 13, 2020. . https://doi.org/10.1101/2020.04.12.038000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5. The architecture of the open chromatin profiles across cell types. (A) The 

hierarchy plots of open chromatin for non-immune cell types based on all accessible 

peaks, colored by cell types. (B) The t-SNE plot of the epithelial cells from different 

organs. (C) Cicero peak-to-gene connections for the CLPS locus in different organs. 

CLPS is a signature gene of epithelial cells in the pancreas. Only connections with co-

accessibility score >= 0.25 are shown. (D) TF activity (defined by chromVAR 

deviations) overlay on single-cell ATAC t-SNE plot (as in B), showed signature TFs of 

the liver (GATA1-TAL1 complex), small intestine (CDX2), esophagus (TP63) and 

stomach (GATA6). 

 

Figure 6. The co-expression gene module map across cell types. (A) Left: the bar 

plot shows the number of genes in each gene module. Middle: the heatmap shows the 

average Spearman correlation of gene expression levels in each gene module (row, 

n=227) and each cell type (column, n=10). Right: the heatmap shows whether the genes 

in a gene module have enriched TF or miRNA regulators, gene ontology (GO) terms, 

KEGG pathways and protein-protein interactions (Hypergeometric test, FDR < 0.05). 

Gene modules were grouped by similar biological functions and then sorted by average 

correlation. (B) The bar plot shows the gene type composition in each gene module, 

ordered by the fraction of protein-coding genes. PCG: protein-coding gene. (C) The 

scatter plot shows the genomic distribution pattern of genes in each gene module. The 

x-axis means the ratio of gene pairs in the same chromosome and the y-axis means the 

average genomic distances of genes. The maximum correlation means the maximum 

value of the average of gene-gene correlation for each cell type. (D) The ratio of gene 

modules with enriched TF, protein-protein interaction (PPI), GO biological process and 

KEGG pathway for gene modules with different maximum correlation scores. (E) The 

scatterplot comparing the co-expression index and the co-accessibility index of each 

CGM (n=225, two mitochondria-related CGMs: MD88 and MD101, were excluded 

because these genes aren’t located in the nuclear genome) and each cell type (n=9). 

225*9 = 2025 points in total. The co-expression index was defined by the average 

Spearman correlation coefficients of the expression level each pair of genes within 

CGM, and the co-accessibility index was defined by the average Jaccard indexes of 

binary gene activity scores of each pair of genes (F) The line chart shows the ratio of 

highly co-accessible (co-accessible index >= 0.98) gene pairs changes over the co-

expression threshold. (G) The line chart shows the ratio of highly co-expressed (co-

expression index >= 0.2) gene pairs changes over the co-accessibility threshold. 

 

Figure 7. Representative gene modules. Two gene modules are shown: MD51 (A-F) 

and MD117 (G-L). (A and G) The heatmaps show the Spearman correlation of gene 

pairs. The grey blocks mean the correlation of genes expressed in less than 10% cells 

of the corresponding cell type. (B and H) The heatmaps show the relative gene 

expression levels for each gene (row, ordered as A and G, respectively) in each cell 

(column, only 500 randomly sampled cells are shown, ordered by expression level). (C 

and I) The bar plots show the enriched terms for enriched GO terms. Only the top 10 
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significant terms are shown. (D and J) The protein-protein interaction for the genes in 

the specific gene module. The blue, purple and yellow lines mean the PPIs are supported 

by curated databases, experimental determination and text mining, respectively. (E and 

K) The scatter plots show the TF motif enrichment in regulatory regions (see Methods 

for more details) of CGM genes (x-axis) and the average Spearman correlation 

coefficients of TF with CGM genes in the pancreas Fibro-PAMR1+SOX6+ cells (E) 

and small intestine SM-Visceral cells (K). The TFs with the FDR < 1e-5 and the average 

co-expression > 0.2 (E) < -0.1 or > 0.09 (K) are highlighted. (F and L) Co-expression 

and co-accessibility network of MD51 genes and MD117 genes, respectively. Each 

node represents a gene. Red lines: co-expression index > 0.25 and co-accessibility 

index > 0.9. Blue lines: co-expression index > 0.25 only. Grey lines: co-accessibility 

index > 0.9 only. 
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Figure 4 
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Figure 5 
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Supplementary Figure Legends 

 

Figure S1. The overview of GeACT project, Related to Figure 1. (A) The bar plot 

shows the number of cells after quality control for each organ in the single-cell RNA-

seq data. (B and C) The distribution of detected gene number (B) and UMI number (C) 

in the single-cell RNA-seq data. (D) The bar plot shows the number of cells after quality 

control for each organ in the single-cell ATAC-seq data. (E and F) The distribution of 

detected fragment number (E) and peak number (F) in the single-cell ATAC-seq data. 

 

Figure S2. The single-cell transcriptome landscape in the stomach, Related to 

Figure 2. (A) The t-SNE plot shows the cells colored by cell types. Epi: epithelial cells. 

Endo: endothelial cells. SM: smooth muscle cells. Fibro: fibroblasts. DC/Macro: 

dendritic cells or macrophages. (B) The relative expression level of marker genes for 

primary cell type groups. (C) The relative expression of signature genes in each cell 

type. (D) The relative expression of TFs in each type. Only the top 1~2 significant TFs 

are shown. (E) The bar plot shows the enriched terms of GO biological process. Only 

the top 10 significant terms are shown. (F) The bar plot shows the composition of each 

cell type. 

 

Figure S3. The single-cell transcriptome landscape in the liver, Related to Figure 

2. (A) The t-SNE plot shows the cells colored by cell types. Epi: epithelial cells. Endo: 

endothelial cells. Fibro: fibroblasts. MPP: multipotent progenitors. DC/Macro: 

dendritic cells or macrophages. “Prog” and “Prol” mean progenitor cells and 

proliferative cells, respectively. (B) The relative expression level of marker genes for 

primary cell type groups. (C) The relative expression of signature genes in each cell 

type. (D) The relative expression of TFs in each type. Only the top 1~2 significant TFs 

are shown. (E) The bar plot shows the enriched terms of GO biological process. Only 

the top 10 significant terms are shown. (F) The bar plot shows the composition of each 

cell type. IV, V and VIII mean the corresponding segments. Around means the segments 

VII, VI, II and III. 

 

Figure S4. The single-cell transcriptome landscape in the kidney, Related to Figure 

2. (A) The t-SNE plot shows the cells colored by cell types. PT: proximal tubule. LoH: 

loop of Henle. DT: distal tubule. PC: principal cells. Epi: epithelial cells. CM: cap 

mesenchyme. Endo: endothelial cells. SM: smooth muscle cells. Fibro: fibroblasts. 

“Prog” and “Prol” mean progenitor cells and proliferative cells, respectively. (B) The 

relative expression level of marker genes for primary cell type groups. (C) The relative 

expression of signature genes in each cell type. (D) The relative expression of TFs in 

each type. Only the top 1~2 significant TFs are shown. (E) The bar plot shows the 

enriched terms of GO biological process. Only the top 10 significant terms are shown. 

(F) The bar plot shows the composition of each cell type. 

 

Figure S5. The architecture of expression profiles across cell types, Related to 

Figure 3. The dendrograms show the clustering of gene expression for non-immune 
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cell types based on TFs (A), cell surface markers (B) and lncRNAs (C), colored by cell 

types. 

 

Figure S6. The architecture of single-cell chromatin accessibility profiles across 

organs and cell types, Related to Figures 4 and 5. (A) Comparison of cell type 

proportion in each organ between METATAC data and MALBAC-DT, colored by 

organs. (B) The same as (A), colored by cell types. (C and D) Cicero peak-to-gene 

connections for the marker gene locus in different organs. Only connections with co-

accessibility score >= 0.25 are shown. Connections with co-accessibility score >= 0.4 

are colored by purple. (C) is for MUC13, which is a marker gene of epithelial cells in 

the small intestine. (D) is for KRT15, which is a signature gene of epithelial cells in the 

esophagus. 

 

Figure S7. The co-expressed gene modules (CGMs) map across cell types, Related 

to Figures 6 and 7. (A) The distribution of Spearman correlation for all gene pairs 

using 100, 500, 1100 and 1700 cells, respectively. (B) The quantile of correlation using 

100~1700 cells, respectively. (C) The number of detected gene modules using 

100~1700 cells, respectively. (D) The number of genes in gene modules using 

100~1700 cells, respectively. (E-G) The heatmap of co-expression differences and the 

co-accessibility differences of CGM genes between two cell types. The upper triangle 

is the expression Spearman correlation in cell type 1 minus that in cell type 2, and the 

lower triangle is the binary gene activity Jaccard index in cell type 1 minus that in cell 

type 2. E: MD51, pancreas Fibro-PAMR1+SOX6+ cells compared with stomach Fibro-

FBLN1 cells. F: MD117, small intestine SM-Visceral cells compared with small 

intestine Fibro-COL6A5 cells. G: MD34, lung Fibro-0 cells compared with small 

intestine T cells. 

  

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 13, 2020. . https://doi.org/10.1101/2020.04.12.038000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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Figure S7 
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Supplementary Table Legends 

 

Table S1. The summary of the samples and oligonucleotides used for sequencing, 

Related to Figure 1. 

 

Table S2. The metatable and signature genes for the single-cell RNA-seq data, Related 

to Figure 2. 

 

Table S3. The metatable for the single-cell ATAC-seq data, Related to Figure 4. 

 

Table S4. The metatable for correlated gene modules (CGMs), Related to Figure 6. 
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