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Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. 
However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each 
other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple om-
ics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations 
(CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause 
proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs gen-
erally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells 
derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells 
based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting 
the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a 
population of cells. 
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Introduction

The development of single-cell genome, DNA meth-
ylome, and transcriptome sequencing technologies in 
recent years has greatly aided dissection of the heteroge-
neity within a population of cells [1, 2]. We and others 
have developed single-cell RNA-seq methods, such as 
scRNA-seq, Smart-seq/Smart-seq2, CEL-seq, MARS-
seq, STRT-seq, and Quartz-seq [3-8], and applied these 

techniques to analyze gene expression dynamics during 
mammalian embryonic development or tumor heteroge-
neity [9-13]. Single-cell genome-sequencing technolo-
gies have been used to reveal recombination patterns and 
aneuploidies in single human germ cells [14, 15], and 
genomic heterogeneities in tumors and circulating tumor 
cells [16-18]. Recently, we and others have developed 
single-cell DNA methylome sequencing techniques, such 
as single-cell reduced representation bisulfite sequencing 
(scRRBS) and single-cell bisulfite sequencing (scBS) [19, 
20]. We have applied scRRBS in analyzing DNA meth-
ylome dynamics during mammalian early embryonic 
development [21]. Combined genome and transcriptome 
analyses of a single cell based on either microarray or 
next-generation sequencing have also been successfully 
used to analyze tumor heterogeneity [22-25]. However, 
to directly analyze the mechanisms by which genetic and 
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epigenetic factors regulate gene expression in an individ-
ual cell, the genome, epigenome, and transcriptome need 
to be simultaneously analyzed in a single cell. This ap-
proach is especially desirable for cancer, which displays 
strong heterogeneity in all of these three omics [26-28].

Here we report the development of a single-cell tri-
ple omics sequencing technique, single-cell triple om-
ics sequencing (scTrio-seq), and the application of this 
technique for analyzing the relationship between the 
genome (copy-number variations, CNVs), DNA methy-
lome, and transcriptome of a single mammalian cell. We 
demonstrate that CNVs can be reliably identified using 
single-cell RRBS data produced from the scTrio-seq 
assay. We observed a negative correlation between pro-
moter methylation and RNA expression, and a positive 
correlation between gene body methylation and RNA ex-
pression, in a single cell. Furthermore, a strong positive 
correlation between the DNA copy number and gene ex-
pression within the affected genomic region was found. 
In contrast, the DNA copy number does not affect DNA 
methylation level of the region. Finally, we used sc-
Trio-seq to analyze 25 single cells derived from a human 
hepatocellular carcinoma (HCC) tissue sample and found 
two subpopulations distinct in DNA copy numbers, DNA 
methylation, and RNA expression levels. By comparing 
the multi-omic differences between two HCC subpopula-
tions, we found that the subpopulation I, accounting for 
a minor part in tumor tissues, harbored more copy-gain 
CNVs, expressed more invasive cell markers, and were 
more likely to evade immune surveillance.

Results

Development of the scTrio-seq method
First, we developed a mild lysis protocol with which 

we only lysed the cytoplasm of an individual cell to 
release the mRNAs into the solution while keeping the 
nucleus intact. We next centrifuged the lysis product to 
separate the mRNA-containing supernatant from the 
nucleus-containing precipitate, and each was transferred 
to a different tube. The supernatant was subjected to 
the scRNA-seq method we previously developed [29], 
whereas the precipitate was subjected to DNA methy-
lome sequencing using the scRRBS method we recently 
developed [19]. This approach simultaneously yielded 
genomic (in term of CNVs), DNA methylomic, and 
transcriptomic information from the same cell. We have 
named this new method the scTrio-seq technique (Figure 
1A).

To test the method, we sequenced six single HepG2 
cells (a human hepatoblastoma-derived cell line) and six 
mouse embryonic stem cells (mESCs) using scTrio-seq; 

we also subjected HepG2 cells and mESCs to scRNA-
seq and scRRBS as technique controls. The DNA meth-
ylome data obtained from scTrio-seq yielded an average 
of 1.5 million CpG sites from a single HepG2 cell and 
0.8 million CpG sites from a single mESC cell, which 
is comparable to the detection efficiency of the standard 
scRRBS method (Table 1 and Supplementary infor-
mation, Table S1). Compared with scRRBS data, the 
scTrio-seq technique did not result in a significant loss 
of DNA segments, even at a resolution of 1 kb (Figure 
1B). This result demonstrates that the physical separation 
of the nucleus from the supernatant can retain all the 
chromosomes of an individual cell. Moreover, the DNA 
methylation levels of individual HepG2 cells analyzed 
by scTrio-seq and those analyzed using standard scRRBS 
technique were also comparable (Figure 1C and Sup-
plementary information, Figure S1A). We were able to 
detect the hypomethylation valleys around transcription 
start sites (TSSs) as well as hypermethylation patterns 
of the gene bodies at the single cell level (Figure 1D 
and 1E, Supplementary information, Figure S1B). These 
results indicate that the measurement of the DNA methy-
lome by scTrio-seq is as accurate as that obtained by the 
standard scRRBS approach.

We next tested the ability of scTrio-seq to accurately 
measure the gene expression pattern. We found that sc-
Trio-seq detected an average of 6 179 genes in a single 
HepG2 cell. When we merged the transcriptome se-
quencing data from only six individual cells analyzed by 
scTrio-seq, a total of 10 390 genes were detected; this 
detection efficiency is comparable to that of a standard 
RNA-seq for bulk cells (Supplementary information, 
Figure S1C and S1D). The correlation between the sc-
Trio-seq data and the standard scRNA-seq data was quite 
high (Pearson correlation coefficient = 0.96; Supplemen-
tary information, Figure S1E). To confirm the accuracy 
of quantitative gene detection using scTrio-seq, we quan-
tified the relative gene expression using real-time quanti-
tative PCR (qPCR) as previously described [30]. The re-
sults showed that scTrio-seq quantified the expression of 
genes highly accurately when only half of the single-cell 
lysis product was used for cDNA amplification (Supple-
mentary information, Figure S1F).

CNV deduction using scTrio-seq
Next, we attempted to identify global CNV patterns 

using the standard RRBS data of bulk cells, which could 
cover 0.57 million unique DNA fragments after MspI 
digestion at CCGG……CCGG. This corresponds to ~1 
900 unique MspI-digested DNA fragments per 10-Mb 
bin that can support the copy-number measurement. We 
observed strong correlations between the sequencing 
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depth and GC content, especially the number of Ms-
pI-digested DNA fragments in each 10-Mb bin (Supple-
mentary information, Figure S2A). We also performed 
both RRBS and whole-genome sequencing of the normal 
human liver tissues as a normal control. The same CNV 
patterns were observed in both the HepG2 whole-ge-
nome sequencing data and in the bulk RRBS data at a 
resolution of 10 Mb, consistent with that of the published 
SNP array data (Cancer Cell Line Encyclopedia) [31] 
and whole-genome bisulfite sequencing data [32] (acces-
sion number SRX332734; Figure 1F). We also calculated 
the sensitivity and specificity at different resolutions 
using the whole-genome sequencing data as a standard 
reference (Supplementary information, Figure S2B and 
S2C).

As a single mammalian cell has only two copies of ge-
nomic DNA, it is not feasible to simultaneously perform 
single-cell whole-genome DNA amplification and bisul-
fite conversion of the genome. Because more than one 
hundred thousand MspI-digested DNA fragments were 
recovered in the DNA methylome data of scTrio-seq (Ta-
ble 1), we tested the ability to measure CNVs using the 

RRBS data of scTrio-seq in an individual cell. We also 
observed strong correlations between the sequencing 
depth and the number of MspI-digested DNA fragments 
for each 10-Mb bin in the scTrio-seq and scRRBS data 
(Supplementary information, Figure S3A and S3B). After 
normalization by the normal liver tissue, scTrio-seq can 
also be used to accurately deduce almost all the CNVs in 
a single HepG2 cell at a 10-Mb resolution (Figure 1F).

We verified the diploid nature of our mESC cell line 
by normalizing it with the published normal diploid 
mESC data (accession number SRX673789, Figure 1F 
and Supplementary information, Figure S3C). Using the 
bulk mESC cell data as a control, we observed a 95.3% 
specificity and 98% sensitivity of CNV deductions at a 
10-Mb resolution using scTrio-seq data (Supplementary 
information, Figure S3D). Furthermore, we also fitted 
the normalized copy numbers to integer values for sc-
Trio-seq data and scRRBS data using a hidden Markov 
model (HMM) [16, 33]. As the RRBS reads are not uni-
formly distributed in the genome, we tried to raise the 
resolution of CNV deduction of scTrio-seq by focusing 
on the highly covered genomic regions, and found that 

Figure 1 Sensitivity and reliability of the scTrio-seq technique. (A) A flow chart illustrating the scTrio-seq technique. After a 
single cell was lysed with mild lysis buffer, the lysis product was centrifuged. The supernatant was transferred to a new tube 
for transcriptome sequencing analyses, while the pellet (containing the nucleus) was bisulfite-converted for genome (CNVs) 
and epigenome sequencing analyses. (B) Comparing the rate of detection of DNA segments in HepG2 scTrio-seq data and 
HepG2 scRRBS data. The total DNA segments are those that can be detected in the bulk HepG2 RRBS data. (C) Compar-
ing the average DNA methylation levels of CpG sites in different genomic regions between HepG2 scTrio-seq and HepG2 
scRRBS data. (D) DNA methylation pattern in gene body regions as determined from HepG2 scTrio-seq data and RRBS 
data. The averaged DNA methylation level of CpG sites is calculated from all RefSeq genes in regions from the TSSs to TESs 
and their 15-kb flanking regions. (E) Unsupervised hierarchical clustering analysis based on Pearson correlations between 
global CpG methylation levels of different HepG2 samples. (F) CNV deduction results at a 10-Mb resolution. The normalized 
copy number values (red or blue dots) for the bulk genome DNA sequencing data and bulk RRBS data are shown. For the 
scTrio-seq data, HMM fitting results (red or blue segments) are also shown.

Table 1 Number of the detected CpG sites, genes, and MspI-digested fragments in single HepG2 cells
          Sample                         Unique CpGs (1×)   Unique CpGs (3×)   Genes (FPKM≥0.1)   Genes (FPKM≥1)   MspI-digested fragments

scTrio-HepG2-#1 1 834 536 1 276 842 6 083 4 373 150 288
scTrio-HepG2-#2 1 239 255 819 238 6 440 4 746 103 892
scTrio-HepG2-#3 1 217 007 709 874 6 271 5 122 104 884
scTrio-HepG2-#4 1 251 747 725 124 5 808 4 329 105 635
scTrio-HepG2-#5 1 762 799 1 201 953 6 437 4 904 145 361
scTrio-HepG2-#6 1 820 527 1 308 313 6 036 4 702 146 772
Mean of scTrio-HepG2 1 520 979 1 006 891 6 179 4 696 126 139
scRRBS-HepG2-#1 1 336 924 780 377 / / 115 853
scRRBS-HepG2-#2 1 199 569 701 340 / / 105 278
scRNA-HepG2-#1 / / 6 099 4 335 /
scRNA-HepG2-#2 / / 6 542 4 987 /
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shorter CNV segments and more accurate breakpoints 
of CNVs can be identified (Supplementary information, 
Figure S3E). Together, these results demonstrate that the 
scTrio-seq technique can simultaneously and accurately 
analyze the genome (CNVs), DNA methylome, and tran-
scriptome in a single cell.

Application of scTrio-seq to explore the relationship 
between the genome (CNVs), DNA methylome, and tran-
scriptome in a single cell

Epigenetic modifications are important for regulating 
chromatin status and gene expression. They are poten-
tially heterogeneous within a cell population, especially 
in cancer [34]. Many studies have indicated that DNA 
methylation in the promoter regions often negatively 
correlates with gene expression, whereas DNA methyl-
ation in the gene body positively correlates with gene 
expressions [35]. We also observed same correlations in 
bulk cell data (Supplementary information, Figure S4A). 
We next used scTrio-seq data to explore the relationship 
between methylation and gene expression in individual 
cells, and found a similar negative correlation between 
promoter DNA methylation and the expression level of 
the corresponding gene in each HepG2 cell (Figure 2 and 
Supplementary information, Figure S4B). This correla-
tion indicates that high DNA methylation in promoters 

may repress the expression of corresponding genes with-
in a HepG2 cell. Moreover, DNA methylation in the gene 
body (excluding promoter regions) showed a positive 
correlation with gene expression (Figure 2). Furthermore, 
this positive correlation increased when moving to the 3′-
end of gene body, indicating that gene body DNA meth-
ylation may promote the transcription of these genes. To 
our knowledge, this is the first global demonstration of 
relationship between DNA methylation and RNA expres-
sion in single cells.

The CNV patterns in the scTrio-seq data from six 
HepG2 cells showed that these six cells shared most 
of their CNVs. However, some CNVs were unique to 
only one of the samples (Figure 3A). For example, four 
copies of chromosome 2 were identified in sample sc-
Trio-HepG2-#6, but only three copies of this region were 
identified in each of the other five single cells. Further-
more, we calculated the relative expression levels within 
each 10-Mb window of scTrio-seq data by normalizing 
the data with the RNA-seq data from normal liver tissues 
(Figure 3B). We compared the CNV patterns with the 
RNA expression patterns and found that expression of 
genes within the genomic regions with extra copies also 
increased proportionally. Similarly, the expression of 
genes within genomic regions with lost copies propor-
tionally decreased (Figure 3A-3C). We observed a Pear-

Figure 2 The relationships between DNA methylation and gene expression in single cells. The Pearson correlations between 
DNA methylation and gene expression are calculated in different regions on gene body (from TSS to TES) and their 15-kb 
flanking regions in scTrio-seq data of HepG2 cells.
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son correlation coefficient of 0.68 ± 0.07 (mean ± SD) 
between the digital DNA copy number values and the 
gene expression levels in the same cell at a 10-Mb reso-
lution, which is consistent with the bulk cell data (Figure 
3D and Supplementary information, Figures S4C and 
S5A). These results indicate that CNVs contribute to the 
changes of gene expression by changing the copy num-
bers and dosages of genes within these genomic regions. 

In contrast, the DNA methylation level within the ge-
nomic region that gained or lost copies showed no alter-
ation (Figure 3C). The correlation coefficient between the 
digital DNA copy number values and DNA methylation 
levels was 0.05 ± 0.02 (mean ± SD) for single cells (Figure 
3D and Supplementary information, Figure S5B). For 
the bulk HepG2 data, there was no correlations between 
DNA copy numbers and DNA methylation levels even at 
a 0.5-Mb resolution (Supplementary information, Figure 
S4C), indicating that large-scale CNV patterns generally 
did not directly affect the DNA methylation levels within 
the corresponding genomic regions. Therefore, at the sin-
gle-cell resolution, CNVs affect gene expression mainly 
by dosage effect but do not markedly change the DNA 
methylation patterns of the corresponding genes.

Application of scTrio-seq to explore the genome (CNVs), 
DNA methylome, and transcriptome relationships in 
HCC

Single-cell analyses have provided new insights into 
the evolution, therapeutic responses, and drug resistance 
of cancer [16, 36]. Single-cell genome and transcriptome 
sequencing analyses have accelerated studies of tumor 
heterogeneity [37]. Changes in DNA methylation also 
have a critical role in tumorigenesis [38, 39]. Global 
DNA hypermethylation or hypomethylation has been ob-
served in many types of cancers, and drugs that regulate 
DNA methylation, such as 5-azacitidine and decitabine, 
have been used in cancer therapy [40, 41]. However, the 
heterogeneity of DNA methylation in tumors in vivo has 
not been well characterized over the entire genome at 

single-cell resolution, and the relationships between the 
genome, epigenome, and transcriptome in single cancer 
cells have not been directly elucidated.

The RRBS data obtained from bulk HCC cells in-
dicated global hypomethylation compared with the 
adjacent normal liver cells (Supplementary informa-
tion, Figure S6), which is consistent with results from 
previous studies [42, 43]. We next analyzed 26 single 
cells isolated from a HCC sample from one patient using 
the scTrio-seq technique. As expected, these HCC cells 
showed global hypomethylation patterns (Figure 4A and 
4B), except for one cell (HCC-sc#26; Supplementary 
information, Figure S7). Unlike the other 25 cells, this 
cell lacked significant aneuploidies (Supplementary in-
formation, Figure S8), indicating that it was likely to be 
noncancerous cell. After excluding this cell, we focused 
on the remaining 25 cancer cells in further analyses.

As observed in HepG2 cells, the DNA copy number 
and expression profile also showed strong correlations in 
HCC cells, with a Pearson correlation coefficient of 0.73 
± 0.04 (mean ± SD) between the digital copy-number 
values and the gene expression levels in individual HCC 
cells. However, the DNA copy number did not signifi-
cantly affect the DNA methylation at the 10-Mb scale 
(Pearson correlations, 0.025 ± 0.035; Supplementary in-
formation, Figure S7C).

Differences in triple-omics between two subpopulations 
of HCC cells

We then performed an unsupervised hierarchical 
clustering analysis of these 25 hepatocellular carcinoma 
cells based on their CNV patterns, and this separated 
these cells into two subpopulations. All the 25 HCC 
cells harbored extra copies of Chr. 7 and the q arm of 
Chr. 1; these extra copies were also detected in several 
previously analyzed HCC samples [44]. Furthermore, 
subpopulation I harbored several unique CNVs including 
gained copies of Chr. 8, Chr. 11 and Chr. 20. Conversely, 
subpopulation II lost copies of Chr. 4 and Chr.16 (Fig-

Figure 3 The relationships between genome (CNVs), DNA methylation, and gene expression in single cells. (A) CNV de-
ductions of single HepG2 Trio-seq data or scRRBS data at a 10-Mb resolution. The purple or green dots represent the nor-
malized copy numbers and the purple or green segments represent the integer copy number fitted by HMM. (B) Heat map 
of normalized relative gene expression levels in 10-Mb genomic windows. The genes are ranked according to their genomic 
positions. The relative expression values (normalized to liver bulk RNA-seq data) of all the genes in each 10-Mb window of 
each sample are represented by blue to red colors. (C) Relationship between CNV patterns, DNA methylation, and gene ex-
pression within single cells. Normalized DNA methylation value is compared with bulk liver RRBS data. Zoom-in pictures rep-
resent the normalized copy number, relative RNA expression, and DNA methylation values of the same 10-Mb window from 
the regions from Chr.14 to Chr.18. (D) The correlations between the copy numbers and gene expression (or DNA methylation 
levels). The boxplot shows the distributions of each 10-Mb window’s relative expression level (or DNA methylation level) with-
in each copy-number group. The Pearson correlation coefficient is shown at the top right corner. Note that there is no 10-Mb 
DNA fragments with digital copy number of 4.
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Figure 4 ScTrio-seq analyses of single HCC cells. (A) Global DNA methylation levels of CpG sites of HepG2 cells and HCC 
cells. Each circle represents the DNA methylation of one single cell, and the lines represent the bulk or average (single-cell) 
results. HCC bulk (for the regions also detected in scRRBS) represents the DNA methylation of HCC-bulk cells, the calcula-
tion for which only includes regions that are also detected in the HCC scTrio-seq data. (B) Average CpG methylation levels 
in gene bodies (from TSSs to TESs) of all RefSeq genes and their 15-kb flanking regions in HepG2 cells and HCC cells. (C) 
Heat map showing normalized copy-number values of 10-Mb windows deduced from RRBS data of scTrio-seq analysis. The 
HCC cells are clustered based on their CNV patterns. (D) Heat map showing relative gene expression levels in each 10-Mb 
genomic window. The HCC cells are clustered based on their expression levels in each genomic window. (E) The concor-
dance of the DNA methylation of normal liver cells and that of HCC cells. Each dot shows the Pearson correlation coefficient 
between any two single cells within each group.
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ure 4C and Supplementary information, Figures S8 and 
S9A). We also identified similar patterns and obtained 
similar clustering results using RNA expression values 
of the genes within each 10-Mb window (Figure 4D). At 
a 10-Mb resolution, a comparison of the CNV patterns 
between subpopulation I and subpopulation II defined 
164 10-Mb bins with CNV differences between the two 
subpopulations as “differential CNV regions” and 158 
bins without CNV differences as “shared CNV regions”.

Next, we examined the heterogeneity in global DNA 
methylation level among these 25 cancer cells. We found 
that cells of the same subpopulation (I or II) had higher 
correlations compared with the normal liver cells, while 
there was noticeable heterogeneity among two subpop-
ulations (Figure 4E). We then performed unsupervised 
clustering analysis for these cells based on methylation 
level of all detected CpG sites. Notably, this analysis also 
separated these cells into two subpopulations exactly 
identical to those identified by the CNV patterns (Fig-
ure 5A and Supplementary information, Figure S9B). 
Of these two subpopulations, subpopulation I displayed 
slightly higher level of global DNA methylation than 
subpopulation II, but the differentially methylated re-
gions (DMRs) were not associated with the regions of 
different CNV (Supplementary information, Figure S9C 
and S9D).

To analyze the DMRs between and within two HCC 
subpopulations, we calculated the methylation level and 
variance with a 3-kb sliding window across all the 25 
HCC cells [20]. After ranking the windows with their 
DNA methylation variances among the 25 HCC cells, 
we found the top variable windows were significantly 
enriched in the CpG island (CGI) region (Fisher’s exact 
test, FDR = 2 × 10−15; Supplementary information, Figure 
S10A). Moreover, the CGI region also had higher DNA 
methylation variances within each subpopulation. A total 
of 140 and 200 out of the 300 most variable windows 
were located in CGI regions in subpopulation I and sub-
population II, respectively (Supplementary information, 
Figure S10B and S10C). We next compared the DNA 
methylation level of each CGI and identified the CGIs 
with significant methylation level difference (difference 
> 0.3; Fisher’s exact test P value < 0.05) as differentially 
methylated CGIs (dmCGIs) between the two HCC sub-
populations. We found 69 CGIs were hypermethylated 
in subpopulation I, and 33 were hypermethylated in sub-
population II (Figure 5B).

To analyze gene expression differences between the 
two subpopulations in HCC, we performed a principal 
component analysis using the gene expression data from 
25 HCC cells and this again notably distinguished two 
cell subpopulations consistent with the results from the 

analyses on CNV patterns and DNA methylation data 
(Figure 5C). Subpopulation I expressed significantly 
higher levels of 245 genes and significantly lower levels 
of 350 genes than subpopulation II (FDR < 0.05; Figure 
5D). The 245 genes with higher expression levels in 
subpopulation I were not significantly enriched in Gene 
Ontology (GO) terms. Interestingly, the 350 genes ex-
pressed significantly lower in subpopulation I were clear-
ly enriched in several GO terms, such as acute inflam-
matory response, innate immune response, and comple-
ment activation, as well as complement and coagulation 
cascades in the KEGG pathway analysis (Figure 5E and 
Supplementary information, Figure S11). Complement 
activation has been considered a biomarker of many tu-
mors [45], and the protein AIM has been identified as the 
complement activator that initiates HCC necrotic death 
[46, 47]. Thus, the data suggest that the cells in subpop-
ulation I are less responsive to the immune recognition 
than those in subpopulation II.

Although DNA copy-number difference between 
two HCC subpopulations may contribute to differential 
RNA expression on a large scale of genomic region, 
the expression of individual genes is still regulated by 
DNA methylation in DMRs in a context-dependent man-
ner. For example, both ANO1 and S100A11 have been 
reported to have important roles in tumorigenesis and 
cancer metastasis [48-52]. We found that for HCC cells 
in subpopulation I, both ANO1 and S100A11 had lower 
DNA methylation levels. However, the hypomethylation 
occurred in the gene body of ANO1, whereas in S100A11 
it was the promoter that was hypomethylated, and the ex-
pression level of ANO1 in these HCC cells is suppressed, 
whereas the expression of S100A11 is elevated in sub-
population I (Figure 6A and 6B).

Taken together, these results indicate that the DNA 
copy number, DNA methylome, and transcriptome sig-
nificantly differ between subpopulations I and II. The 
differential CNV regions, DMRs, and differentially 
expressed genes regulated each other. HCC cells in sub-
population I, which harbor more copy-gain CNVs, are 
likely to escape the immune recognition and are more 
invasive compared with the cells in subpopulation II. It 
also should be noted that these single cells account for a 
minor part in the tumor tissue, and thus their unique ge-
nomic, epigenomic, and transcriptomic characters will be 
concealed in bulk analysis.

Discussion

Cancer development and metastasis involve various 
aspects of genomic alternations, including but not limited 
to changes of genomic DNA, epigenetic modifications, 
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gene expression, and complex interplays between them. 
The intrinsically strong intratumoral heterogeneity makes 
it difficult to define an accurate regulatory relationship 
among genome, epigenome, and transcriptome using 
bulk cells. Well-established single-cell methods were 
typically optimized to examine only one aspect of regu-
latory hierarchy, hence losing the possibility to probe the 
inter-omics regulations at the single-cell level. Recently 
reported single-cell dual-omics sequencing methods (e.g., 
DR-seq and G&T-seq) [24, 25] can depict regulatory re-
lationships between genome and transcriptome, but are 
incapable to provide epigenetic information (methylome 
especially), which is critical to RNA expression regula-
tion.

In this study, we have developed a novel method 
called scTrio-seq that can, for the first time, simultane-
ously acquire genome (CNVs), DNA methylome, and 
transcriptome information of the single cells. We have 
shown that this method can accurately deduce CNV pat-
terns at a 10-Mb resolution, obtain the methylation pat-
terns of 1.5 million CpG sites, and detect the expression 
levels of 6 179 genes on average in a single mammalian 
cell. Correlations between genomic (CNVs), methylo-
mic, and transcriptomic data have also been analyzed in 
the same individual cells for the first time. Changes in 
gene dosages due to CNVs proportionally affect the RNA 
expression levels of the corresponding regions, whereas 
they do not significantly affect the DNA methylation lev-
els in these regions.

In scTrio-seq, we physically separate the DNA and 
RNA molecules before amplifications and primer bind-
ing, eliminating the possible genomic DNA cross-con-
tamination in scRNA-seq. Moreover, our mild lysis 
condition and separation procedure are compatible with 
conventional single-cell methods. For example, the DNA 
in the lysate can be used for single-cell whole-genome 
amplification, scRRBS or scBS analysis, while the RNA 
can be processed using Smart-seq or CEL-seq pipelines 
in parallel. Admittedly, to avoid disturbing the nuclear 
DNA precipitate, some RNA-containing supernatant is 
left in the tube after separation, leading to a slight loss of 

RNA transcripts. However, we found that using half of 
the lysate did not compromise the whole-transcriptome 
analysis. Further improvement may be achieved by in-
creasing compactness of DNA pellet to optimize the sep-
aration of DNA and RNA.

Using scTrio-seq, we can detect subpopulations of 
cancer cells according to the genome (CNVs) informa-
tion, and infer malignancy and metastasis potentials of 
the subpopulations based on triple-omic information. 
Moreover, we are also able to explore the relationships 
between differential CNV regions, differentially ex-
pressed genes, and DMRs. After filtering out the dif-
ferences between subpopulations, we can unveil the 
heterogeneity existing within each subpopulation. Our 
work paves the way for deciphering the heterogeneity 
and complexity of cell populations in development and 
cancer by simultaneously interrogating the genome, 
methylome, and transcriptome of their constituents at the 
single-cell level.

Materials and Methods

Cancer sample collection and single-cell isolation
This study was approved by the Ethics Committee of Beijing 

Shijitan Hospital, Capital Medical University. Surgically removed 
HCC specimens were collected from a 51-year-old male patient 
who had provided written informed consent. All the clinicopatho-
logic results of specimen are accordant with hepatocellular carci-
noma. The pathological report shows that the tumor has extensive 
degeneration and necrosis, the surrounding tissue of the tumor has 
nodular cirrhosis, and the pathological features are accordant with 
hepatitis B-associated cirrhosis. The IHC result of the specimen 
is AFP (±), GPC3 (−), ki-67 (−), and CD34 (+). The tissues were 
mechanically dissociated into small pieces on ice and then digest-
ed into an HCC cell suspension using a Tumor Dissociation Kit 
(Miltenyi Biotec 130-095-929); a part of the cancer samples was 
retained for bulk genome, transcriptome, and methylome sequenc-
ing. Three normal liver cells were obtained from the adjacent nor-
mal tissue of another HCC patient. The cell viability of digested 
HCC cells were tested with Propidium iodide (PI) staining. Among 
the digested HCC cells, 76.5% were PI negative (live cells) and 
CD45 negative (non-leukocyte cells) analyzed by FACS. The 
HepG2 cells were cultured in RPMI 1640 medium (Corning, 10-

Figure 5 Differences in triple omics between subpopulation I and II of HCC cells. (A) Unsupervised hierarchical clustering 
analysis based on the Pearson correlations of CpG methylation levels between different HCC samples. A “pairwise” method 
is used when calculating the Pearson correlations. (B) Differentially methylated CGIs (dmCGIs) between subpopulation I and 
subpopulation II HCC cells. The DNA methylation level of each CGI is normalized using the Z-score. The white squares rep-
resent the CGIs that are not detected in each sample. The genes with a dmCGI within the ±1 kb regions of their TSS regions 
are labeled at the bottom. (C) Principal component analysis of the HepG2 and HCC cells according to the expression level 
of RefSeq gene. (D) Hierarchical clustering of Pearson correlation between single HCC single cells considering the genes 
that are differently expressed between subpopulation I and subpopulation II. The expression level of each gene is normal-
ized using the Z-score. The genes in the complement and coagulation cascades and several other cancer-related genes are 
marked. (E) Gene Ontology (GO) analyses of the genes whose expressions are downregulated in subpopulation I.
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Figure 6 Differentially methylated regions on gene promoter and gene body regulate differentially expressed genes. (A) The 
DNA methylation levels on the gene body regions of ANO1 (NM_018043) are much lower in subpopulation I HCC cells. Con-
sequently, ANO1 (NM_018043) has lower expression levels (log2 (FPKM + 1)) in subpopulation I cells. (B) The DNA methyl-
ation levels on the promoter regions of S100A11 (NM_005620) are much lower in subpopulation I HCC cells. Consequently, 
S100A11 (NM_005620) has higher expression levels (log2 (FPKM + 1)) in subpopulation I cells.

040-CVR) containing 10% fetal bovine serum under 5% CO2 at 37 
°C. Before the single-cell study, HepG2 cells were digested with 
0.5% trypsin into a single-cell suspension and picked with a mouth 
pipette.

Purification of HCC cells by MACS
The digested HCC cell suspension was passed through a 70-

µm strainer (BD Biosciences) and then passed through a 40-µm 
strainer (BD Biosciences) to obtain a single-cell suspension. The 
HCC cells were purified by magnetic-activated cell sorting (MACS) 
using MS columns in MACS buffer (2 mM EDTA, 0.5% BSA in 
PBS). Red blood cells and inflammatory infiltrate cells were de-
pleted using CD45 and CD71 MACS beads (Miltenyi Biotec) and 
MS columns (Mitenyi Biotec).

Single-cell segregation for DNA methylome and transcrip-
tome sequencing

Single cells were individually transferred into 200-µl tubes 
using a mouth pipette. The single cells were lysed in 7 µl of soft 
buffer (500 mM KCl, 100 mM Tris-HCl (pH = 8.3), 1.35 mM 
MgCl2, 4.5 mM DTT, 0.45% Nonidet P-40 (Roche, 11332473001), 
0.18 U SUPERase-In (Applied Biosystems, AM2694), and 0.36 
U RNase-inhibitor (Applied Biosystems, AM2682) for 30 min 
at 4 ºC, and then the lysate was vortexed for 1 min at room tem-
perature. All RNAs were released, whereas the nucleus remained 
intact. The lysed single cell was then centrifuged at 1 000× g for 
5 min to leave the nucleus at the bottom of the tube. The 4 µl of 
lysis product supernatant was carefully removed and added to 
another 200-µl tube containing spike-in RNA (ERCC, Ambion) 
and reverse transcriptase. This fraction was used for transcriptome 
analyses, whereas the remaining 3 µl of lysis solution (containing 
the nucleus) was used for genome (CNVs) and methylome analy-
ses. The upper 4 µl of lysis solution was reverse-transcribed with 

poly T primers, and the cDNA was amplified as previously de-
scribed [29]. Protease was added to the bottom 3 µl lysis solution, 
and the DNA was added with 60 fg of unmethylated lambda DNA 
(Fermentas). The released naked DNA was then digested and bi-
sulfite-converted using the scRRBS method [19].

Sample quality control and library construction for se-
quencing

The cDNA amplicons of each single cell were quantified with 
qPCR of two housekeeping genes (GAPDH and ACTB). Amplified 
single-cell cDNA was purified with the DNA Clean & Concentra-
tor 5 Kit (VisTech, HLLCTech, DC2005). The amplification prim-
ers were removed by selecting 500-3 000 bp cDNA products on a 
2% agarose gel; the product was recovered from the gel using the 
VisClean Gel DNA Recovery kit (VisTech, HLLCTech, PC0313). 
The purified cDNAs were then sonicated with a Covaris S2 sys-
tem to generate 150-250 bp fragments. The cDNA libraries were 
barcoded and amplified using NEBNext Ultra DNA Prep Kit for 
Illumina (New England Biolabs, E7370). Single-cell RRBS librar-
ies were constructed according to previously published protocols 
[19], and two genomic loci were checked in RRBS libraries with 
qPCR before the high-throughput sequencing to ensure that DNA 
was present. Only the libraries in which the two genomic loci 
were detected were sequenced. Bulk cDNA libraries and RRBS 
libraries were constructed according to previously published pro-
tocols [53]. All constructed libraries were used for 100-bp pair-end 
high-throughput sequencing on an Illumina HiSeq2000 or HiSeq 
2500 Sequencer. The qPCR primers for checking the bisulfite-con-
verted DNA were

Chr3_Forward: GTTAGGGAAGAGTTGGTTAGAG
Chr3_Reverse: TCTAAAACCAAATCTAAATCCTAAA
Chr17_Forward: GGTTTTTGGTGAGTTTTTTTT
Chr17_Reverse: AACCTACACAAACCCAAAAT
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For the HepG2 and mESC cells, we picked 10 cells from each 
cell line. All 20 cells showed high RNA quality and DNA quality 
in qPCR quality control experiments. Then 6 out of the 10 cells of 
each cell line were sequenced using scTrio-seq technique, 2 cells 
were sequenced using scRNA-seq and 2 cells were sequenced 
using scRRBS. For the digested HCC cells, we picked 37 single 
cells, among which 9 cells showed low quality of cDNA and 2 
cells showed low DNA quality in qPCR quality control experi-
ments. We thus sequenced and analyzed the remaining 26 (70.3%) 
HCC single cells.

Sequencing quality control and data processing
Single-cell RNA seq data The raw sequencing reads were 
trimmed to remove low-quality read ends, library construction 
adapters, and amplification primers. The clean reads were aligned 
to the human genome (hg19) or the mouse genome (mm9) with 
Tophat and the gene expression levels were calculated with Cuf-
flinks [54]. Mapped reads, mapped ratio, and detected gene num-
bers are shown in the Supplementary information, Table S2. The 
number of detected RefSeq gene and NONCODE [55, 56] gene 
were calculated separately for each single-cell RNA-seq data, bulk 
cell data, as well as the published RNA-seq data of HepG2 cell 
line (ENCODE, ENCLB257SKY) [57].
Single-cell RRBS data The raw sequencing reads were trimmed 
to remove low-quality read ends and library construction adapters. 
We then aligned the trimmed reads to human or mouse C-T (G-A) 
genomes with the Bismark software [58]. The bisulfite conversion 
rate for each sample, which is shown in the Supplementary infor-
mation, Table S1, was calculated using a spike-in of unmethylated 
lambda DNA. The methylation level of each CpG site was then 
calculated by counting the methylated reads and unmethylated 
reads. Only the CpG sites with a depth of ≥ 3 and a methylation 
level of ≥ 0.9 or ≤ 0.1 were used for further analyses of single-cell 
RRBS sequencing data.

Calculation of the correlation between gene expression and 
DNA methylation at the single-cell level

The gene body was defined as the region from TSS to TES of 
each gene. Considering that the promoter regions and CGI regions 
in gene bod may influence the DNA methylation calculation of 
gene body, we excluded the promoter regions (from TSS to 2 000-
bp downstream of TSS) and the CGI regions from each gene body 
region. The promoter region of each gene was defined as the re-
gion from 1 000-bp upstream to 500-bp downstream of the TSS. 
Only the genes with more than five CpG sites detected in the gene 
body region or gene promoter region were used to analyze the re-
lationship with gene expression, and each CpG site used for anal-
ysis was required to be sequenced at depth of ≥ 3. The DNA meth-
ylation level in the gene body or promoter region was calculated 
based on the mean methylation level of detected CpGs of each 
region. The gene expression level was the FPKM value calculated 
with Cufflinks program. The genes were then arranged according 
to their expression levels. The Pearson correlation coefficients (r) 
between gene body methylation or promoter methylation and the 
corresponding gene expression level (log2 (FPKM + 1)) were cal-
culated as previously described [21].

Unique mappable MspI-digested fragments of RRBS data
We searched the reference genome (hg19 or mm9) for all pos-

sible MspI-digested fragments (CCGG……CCGG) except for 
the ones from random chromosomes. We then generated a simu-
lated paired-end RRBS data using the sequences from two ends 
of these MspI-digested fragments. The simulated RRBS reads 
were mapped to the reference genome in the same manner as the 
experimental data were. We discarded the alignments that yielded 
multiple hits or that could have been mismatched by reads from 
elsewhere. After filtering, we defined 627 448 unique mapped 
fragments from 727 620 candidates in the human hg19 reference 
genome, and 339 101 unique fragments from 427 854 candidates 
in the mouse mm9 reference genome. Unique fragment counts in 
each genomic bin were calculated using BEDTools [59].

Correlations between DNA methylation and RNA expression
The gene body region (from TSS to TES) of each gene was 

divided into 20 equal fractions and the 15-kb upstream (or down-
stream) flanking regions were divided into five fractions. The 
mean DNA methylation level of CpG sites in each fraction of 
each gene was computed by Pearson correlation analysis with the 
corresponding genes. The genes with FPKM < 0.001 were reset to 
0.001, and then the relative gene expressions (log2 (FPKM + 1)) 
were used for correlation analysis with DNA methylation levels 
of different genomic regions. The correlation of adult liver cells in 
Supplementary information, Figure S6C was calculated using the 
published whole-genome bisulfite sequencing data of adult liver 
cells (GSM916049) and the published RNA-seq data of human 
liver (accession number: ERX011229).

CNV deduction with whole-genome sequencing data or 
RRBS data

Samtools depth was used to count the depth of each position 
across the genome. The total sequence depth of each window was 
counted, and then normalized using the total depth of each sam-
ple. The windows with low mappability such as centromere and 
telomere were not included in our analyzed windows. Because the 
systematic coverage bias in the RRBS data is too much to allow 
the deduction of copy numbers, we then normalized the sequence 
depth of each window by dividing it by the normalization factor. 
The normalization factor of each window was calculated by aver-
aging the depth value of normal liver bulk RRBS data. The nor-
malized copy number from each window was then used to cluster 
the human HCC cells with average-linkage hierarchical clustering.

To ensure that the mouse mESCs we used were normal diploid 
cells, we deduced the CNVs of bulk whole-genome sequencing 
data by normalizing it with the published normal diploid mESC 
data (accession number: SRX673789). For the single-cell RRBS 
data, the normalized copy numbers were further fitted to integer 
copy-number values using the hidden Markov model (HMM) as 
described for CNV deductions of circulating tumor cells [16]. The 
integer copy-number values were then used to calculate the Pear-
son correlation with gene expression and DNA methylation.

CNV deduction with RNA-seq data
Approximately 6 000 genes, whose average relative expression 

level (calculated as log2 (FPKM + 1)) exceeded 1.5 across all sin-
gle-cell samples, were used to measure CNVs according to a pre-
vious published method [11]. The CNV value for each gene was 
defined as the mean expression level (FPKM) of the 100 genes 
around the gene (50 upstream genes and 50 downstream genes). 
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The CNV values were then centered to zero by subtracting the av-
erage CNV value for each cell [11]. Furthermore, the relative CNV 
value of a given 10-Mb window was calculated by averaging the 
values of all the genes within the window. We performed a bulk 
RNA-seq analysis of liver tissues near the HCC tissue and also ob-
tained normal liver bulk RNA-seq data from NCBI as the normal 
reference (accession number: ERX011229). Single-cell data sets 
were then normalized to the normal reference, and hierarchical 
clustering was performed to discriminate between samples based 
on the severity of copy-number abnormality.

Sensitivity and specificity of CNV deductions
We used the whole-genome sequencing data of bulk HepG2 

cells as a standard reference for the bulk HepG2 RRBS data. We 
then calculated the sensitivity and specificity of CNV deductions 
at different resolution levels (from 0.1 to 10 Mb) for bulk RRBS 
data. We assessed the specificity and sensitivity of CNV deduction 
in scTrio-seq data using a normal diploid cell line (mouse mESCs). 
The normalized copy-number value of each window was expected 
to be within the range of (1.5-2.5) for autosomes in specificity 
calculation, and (0.5-1.5) for X chromosome in sensitivity calcula-
tion.

DNA methylation variance among single cells
We estimated the cell-to-cell variance with a 3 000-bp window 

as described in a previously published study [20]. First, the mean 
methylation rate of each window in each cell was calculated, and 
the reciprocal of the SEM for each sample was set as the weight 
value for calculating the variance among different cells. The lower 
bound of the chi-squared confidence interval of the variance esti-
mator with a confidence level of 0.95 was then used to calculate 
the variances in each genome element. The variable windows were 
then ranked with their variable values. Distribution enrichment of 
each genomic element in the top 300 variable windows were cal-
culated and the significance was checked using Fisher’s exact test.

Identification of dmCGIs between two HCC subpopulations
For the following analysis, we selected definitively methylated 

CpG (mCG) sites or unmethylated (umCG) sites that were covered 
at least three times in a sample. We counted the mCG and umCG 
in each CGI and determined its methylation level by calculating 
the ratio between mCG and total CpGs. Only the CGIs that had at 
least five CpGs detected in a single-cell sample were considered as 
qualified. We then added the number of mCG and umCG sites in 
a CGI across samples in the same subpopulation if a CGI is qual-
ified in 3 out of 7 cells in subpopulation I and in 5 out of 18 cells 
in subpopulation II. Sites that were differentially methylated at a 
significance level of 0.05 as determined by the Fisher’s exact test 
and had a minimum methylation difference of 0.3 between two 
subpopulations were considered dmCGIs.

Data access
All sequencing data have been submitted to the NCBI Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE65364.
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