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ABSTRACT
◥

Evidence points toward the differentiation state of cells as a
marker of cancer risk and progression. Measuring the differentia-
tion state of single cells in a preneoplastic population could thus
enable novel strategies for early detection and risk prediction.
Recent maps of somatic mutagenesis in normal tissues from young
healthy individuals have revealed cancer driver mutations, indicat-
ing that these do not correlate well with differentiation state and that
other molecular events also contribute to cancer development.
We hypothesized that the differentiation state of single cells can
be measured by estimating the regulatory activity of the transcrip-
tion factors (TF) that control differentiation within that cell
lineage. To this end, we present a novel computational method
called CancerStemID that estimates a stemness index of cells from
single-cell RNA sequencing data. CancerStemID is validated in
two human esophageal squamous cell carcinoma (ESCC) cohorts,
demonstrating how it can identify undifferentiated preneoplastic
cells whose transcriptomic state is overrepresented in invasive

cancer. Spatial transcriptomics and whole-genome bisulfite
sequencing demonstrated that differentiation activity of tissue-
specific TFs was decreased in cancer cells compared with the basal
cell-of-origin layer and established that differentiation state corre-
lated with differential DNA methylation at the promoters of these
TFs, independently of underlying NOTCH1 and TP53 mutations.
The findings were replicated in a mouse model of ESCC develop-
ment, and the broad applicability of CancerStemID to other cancer-
types was demonstrated. In summary, these data support an
epigenetic stem-cell model of oncogenesis and highlight a novel
computational strategy to identify stem-like preneoplastic cells that
undergo positive selection.

Significance: This study develops a computational strategy to
dissect the heterogeneity of differentiation states within a preneo-
plastic cell population, allowing identification of stem-like cells that
may drive cancer progression.

Introduction
A long-held view of oncogenesis is that cancer cells arise from an

aberrant dedifferentiated stem-like state (1–3). Such a model is well
supported in the context of both pediatric (e.g., Wilms tumors;
ref. 4) and adult cancers (1, 5–8), where aberrant or dedifferentiated
states like metaplasia or dysplasia often precede tumor develop-
ment. In addition, there is mounting evidence that the aberrant
stem-like state is often associated with irreversible silencing of
tissue-specific transcription factors (TF) that are important for

specifying and maintaining the normal differentiation state. For
instance, the alveolar differentiation factor NKX2–1 in lung can-
cer (9) or the goblet differentiation factor KLF4 in colon cancer (10)
represent tumor suppressors, and in general tissue-specific TFs have
been observed to be preferentially silenced in the corresponding
cancer-type, suggesting that these non-classical tumor suppressor
events may be causally implicated (11, 12). Unlike classical tumor
suppressors such TP53, RB1, or CDKN2A, these tissue-specific TFs
do not in general represent hotspots of somatic mutations and
genomic deletions in cancer or normal tissue (13–18), with most
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evidence pointing toward an epigenetic silencing mechanism
(11, 19, 20). However, the precise role and timing of these putative
silencing/inactivation events in carcinogenesis remains unclear, and
has not yet been explored at single-cell resolution.

With single-cell technology (21), it is in principle now possible to
explore the heterogeneity of differentiation states within a cell pop-
ulation, including preneoplastic and cancer cells, a critically important
task that could help identify the least differentiated andmore stem-like
cells that are believed to underpin cancer risk and drive cancer
progression, thus paving the way for novel cancer risk and early
detection strategies. Inferring the differentiation state of individual
preneoplastic or cancer cells from single-cell omic data is, however,
challenging since traditional differentiation markers may no longer be
valid (22). While a number of computational methods for measuring
stemness and differentiation state from single-cell RNA sequencing
(scRNA-seq) data have been proposed (23–25), each of these methods
is based on a measure of global transcriptional entropy that does not
directlymodel the differentiation state in terms of the activity of tissue-
specific TFs. Because tissue-specific TFs are the key players controlling
the differentiation state of a cell, it seems natural to develop compu-
tational methods that can estimate this state from the differentiation
activity patterns of these TFs.

Here we present a novel single-cell algorithm called CancerStemID,
to explore the hypothesis that preneoplastic cells undergoing positive
selection during cancer progression may be identifiable by measur-
ing the differentiation activity of tissue-specific TFs. Specifically, we
posited that the number of tissue-specific TFs displaying low dif-
ferentiation activity in a given preneoplastic cell may be a marker of
stemness and cancer risk, reflecting not only the progenitor cell-of-
origin, but potentially also an epithelial reprogramming relative to
the cell-of-origin. We extensively validate CancerStemID in the
context of esophageal squamous cell carcinoma (ESCC). This cancer
is the sixth leading cause of cancer-related deaths worldwide and
represents a canonical paradigm for stepwise oncogenesis, with well-
identifiable precancerous lesions that include low and high-grade
intraepithelial neoplasia, collectively known as squamous dysplasia
(26–28), making this an ideal model system in which to explore our
hypothesis.

Materials and Methods
Human biospecimen and clinical data

This study was conducted in accordance with recognized
ethical guidelines. It was approved by the Institutional Review
Boards of Cancer Hospital, Chinese Academy of Medical Sciences
(20/069–2265). Informed written consent was obtained from each
patient, and clinical information was collected from medical records.
Human biospecimens were obtained from 14 patients with ESCC
recruited between August and October of 2020 at the Linzhou Cancer
Hospital and Linzhou Esophageal Cancer Hospital in Henan, China.
ESCC tumors, dysplasia (≤2 cm to tumor margin), nontumor tissues
(≥5 cm from tumor), and peripheral blood samples were collected
during surgical resection with written consent and approval from
Institutional Review Boards of Cancer Hospital, Chinese Academy of
Medical Sciences (20/069–2265). None of these patients received
chemotherapy or radiotherapy before surgery. The pathologic grading
of squamous dysplasia and staging of ESCC were independently
confirmed by three pathologists according to World Health Organi-
zation classification of Tumors of Digestive System tumors Fifth
edition and American Joint Committee on Cancer 8th edition. A total
of 47 samples were collected, including 8 normal, 10 inflammatory, 6

low-grade intraepithelial neoplasias (LGIN), 9 high-grade intraepithe-
lial neoplasias (HGIN), and 14 invasive cancers (ICA).Medical records
were reviewed to collect clinical data from each patient, including age,
gender, smoking, and drinking behavior.

Sample handling and tissue processing
Tissue samples were placed in RPMI1640 medium (Corning,

catalog no. 10–040-CV) with 20% FBS (Cell Signaling Technologies,
catalog no. 30070.03) immediately after surgical resection. Tissue
was processed for scRNA-seq following previously described proto-
col (26, 29) with a portion being cryosectioned and hematoxylin and
eosin stained to confirm the histologic staging. Briefly, tissues were
rinsedwith cold 10%FBSPBS, cut into small pieces on ice, and digested
in RPMI1640 medium containing 2 mg/mL collagenase IV (Gibco,
catalog no. 17104–019) and 0.5 mg/mL hyaluronidase (Sigma Aldrich,
catalog no. 7326–33–3) for 1 hour at 37�C. The digested cell suspen-
sion was subsequently filtered through a 70-mm cell strainer (Falcon,
catalog no. 352350) before centrifuging at 560� g for 6minutes at 4�C.
Cells were treated with 2 mL of 1� red blood cell lysis buffer (BD
Biosciences, catalog no. 555899) for 5 minutes following centrifuging
of the same parameter. The remaining cells were suspended in 50mL of
1% FBS PBS after washing once with the same medium. Single-cell
suspension was stained with 40,6-diamidino-2-phenylindole (DAPI,
Solarbio, catalog no. C0065) prior to FACS on a BD FACSAria II flow
cytometer (BD Biosciences) to remove dead cells and debris.

Single-cell RNA sequencing
The number and viability cells were examined using cell pellet by

staining Trypan blue (20 mL mix of 10 mL suspension and 10 mL 0.4%
Trypan solution, Thermo Fisher Scientific, catalog no. 15250061),
following centrifuging at 500 � g for 5 minutes at 4�C immediately
after FACS. We targeted for approximately 7,000 cells recovered
from each channel. scRNA-seq libraries were prepared using
Chromium Single Cell 50 Reagent Kits (V1, 10× Genomics, catalog
no. PN-1000006, PN-1000020) and sequencing was accomplished
with an Illumina NovaSeq 6000 (Illumina, Inc.) with 2 � 150 bp
paired-end mode. Raw sequencing data was processed using the cell-
ranger pipeline (version 2.1.0, 10× Genomics) with default parameters
andmapped toGRCh38 reference genome to generatematrices of gene
counts by cell barcodes.

Data preprocessing for cell annotation
Gene count matrices were analyzed with Seurat package (version

3.1.5; ref. 30) in R (version 3.6.3, The R Foundation). The following
quality control criteria were used: nonepithelial cells had to express a
minimum of 200 genes with a mitochondrial fraction less than 10%;
epithelial cells had to express a minimum of 200 genes with a
mitochondrial fraction less than 20%. Suspected doublets were anno-
tated using DoubletFinder package (version 2.0.3) and removed. We
removed ribosomal genes and retained genes that were expressed in at
least 0.1% of all cells. Raw unique molecular identifier (UMI) counts
were normalized using SCTransform function with default para-
meters. A total of 115,930 cells passed quality control and were
included in downstream analysis. Batch effect was adjusted by imple-
mentingHarmony package (version 1.0; ref. 31). Dimension reduction
was performed using principal-component analysis (PCA) and the
optimal number of principal components (PC) selected using
ElbowPlot function. The same PCs are also applied in cell cluster
identification with modularity optimization using kNN graph
algorithm as input. Cell clusters were visualized using UMAP algo-
rithm (32). And with resolution of 0.3, we obtained nine distinct cell
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clusters. These clusters were annotated on the basis of the expression of
known markers. For epithelial cells, the marker genes included
EPCAM, SFN, KRT5, and KRT14, resulting in 5,070 epithelial cells,
including 215 from tissue of normal or inflammatory esophageal
epithelium, 44 from LGIN, 1,456 from HGIN, and 3,355 from ICA
(657, 1,540, 1,137, and 21 for stage I, II, III, and IV, respectively). The
meannumber of genes detected in each epithelial cell was 2,023 and the
average UMI count per cell was 8,202. The mean mitochondrial gene
content was 4.3% of all UMI counts.

Processing of epithelial cells from 14 ESCC patients (Cohort 1)
The 5,070 epithelial cells were then rerun through a Seurat

analysis at a higher level of stringency, where we only retained
cells (i) expressing at least 200 genes, (ii) expressing less than
6,000 genes, (iii) with a DoubletScore < 1 using the doubletCells
function from scran R-package (33) and (iv) a mitochondrial percent-
age < 5%. This resulted in 3178 cells: 95 from normal/inflammatory
state, 28 from LGIN, 1053 from HGIN and 2002 from cancer. After
log-normalization with a scale factor of 104, we selected variable
features using variance-stabilization. After PCA, we estimated five
significant components using the ElbowPlot function. A nearest neigh-
bor graph was constructed using the top five components and clusters
identified at a resolution parameter of 0.1, resulting in 6 epithelial
subclusters.

Processing of scRNA-seq data from 60 patients with ESCC
(Cohort 2)

Full details of sample collection, tissue dissociation, FACS and
scRNA-seq processing of this cohort can be found elsewhere (34).
Briefly, for the cell annotation analysis, we removed cells with less than
500 detected genes ormore than 20%mitochondrial RNAcontent, and
removed genes detected in less than 0.1% across all cells. Out of a total
of 208,659 cells, 97,631 CD45− cells passed quality control. After
clustering for major CD45� cell types and marker gene detection,
44,730 epithelial cells were identified. This comprised 183 normal
epithelial cells and 44,547 cells from patients with ESCC, including
13,041, 14,241, and 17,265 from stage I, II, and III ESCC. On average,
the number of genes detected in a single epithelial cell was 3,446, and
sequencing depthwas 16,442 reads per cell. The averagemitochondrial
content proportionwas 5.9%. For subsequent analyses on the epithelial
cells, these were rerun with Seurat at a higher level of stringency
using the same parameter choices as for Cohort 1 (notably using a
mitochondrial percentage threshold of 5%), resulting in a total of
20,470 epithelial cells (37 normal, 6,362 stage I, 7,000 stage II, and
7,071 stage III).

10� Visium spatial transcriptomic sequencing (Cohort 1)
Esophageal tissue of three patients from Cohort 1 were selected for

10� spatial transcriptomic (ST) sequencing (n ¼ 12). The tissue
samples derived from the same patients were embedded in OCT
sectioning media in a cryomold on dry ice at −80�C. Each ST sample
was processed into sectioning blocks with corresponding pathologic
stages confirmed with hematoxylin and eosin staining. The tissue
blocks were cryosectioned into 10-mm thickness and placed onto
6.5 mm � 6.5 mm capture area of Visium Spatial slides (10×
Genomics, PN-2000233, Spatial 30 v1). The RNA quality of each
sample has passed quality control with RNA integrity number >
7.3, and tissue optimization experiment identified 24 minutes as
optimum permeabilization time for human esophageal tissue. Spatial
gene expression detection experiment was performed following man-
ufacturer’s instructions. Three slides were sequenced at recommended

depths with an Illumina NovaSeq 6000 (Illumina, Inc.). Tissue spots
were visually inspected and annotated by aligning the scanned histo-
logic images using Loupe Browser (version 4.1.0). Raw ST sequences
were mapped to hg38 genome using Spaceranger (version 1.0.0), and
reached an average of 202,743 reads per tissue covered spot (mean
reads of 231,137, 186,996, 190,097 for LZE7, LZE8, and LZE22 tissue
blocks, respectively). The ST sequencing data encompassed a total of
8,679 spots with an average of 3,322 genes detected. A total of 4,208
epithelium/carcinoma spots (Epi spots) were manually selected with
Loupe Browser, including 477 NOR, 945 INF, 243 LGIN, 527 HGIN,
and 2016 ICA Epi spots. Specifically, NOR/INF basal Epi spots were
recognized as located in basal layers of epithelium or near papillae
based on histologic characters (n¼ 621). Each Epi spot covered an area
of 55 mm diameter encompassing 10–20 epithelial cells. ST data were
analyzed with Seurat following standard procedure with the same
quality control, standardization, and clustering parameters, as men-
tioned above. Briefly, raw data were imported into R using Seurat
Load10X_Spatial function. Low quality Epi spots were removed if
number of detected genes fewer than 200 genes and mitochondrial
contents more than 10%. The mean number of genes detected in each
Epi spot was 4,238 and the average UMI count per cell was 16,780. The
mean mitochondrial gene content was 2.13% of all UMI counts.
After batch removal using RunHarmony and gene expression
normalization using SCTransform, Epi spots were clustered into
nine clusters at resolution of 1.2. The top genes of NOR/INF basal
clusters again confirmed the robust annotation by histology, includ-
ing canonical esophageal basal epithelial cell markers such as
ADH7, KRT15, and ALDH3A1.

scRNA-seq data of epithelial cells from the multistage ESCC
mouse model

This 10× scRNA-seq dataset set was first described and presented
in Yao and colleagues (26). Briefly, processed gene UMI count
matrices and cell annotations of esophageal epithelial cells were
obtained from the previous publication. Among 1,760 epithelial
cells, there were 20 normal epithelial cells, (NOR; before 4NQO-
treatment), 372 of inflammatory state (INF), 383 of hyperplasia
(HYP), 187 of dysplasia (DYS), 163 of carcinoma in situ (CIS), and
635 from ICA. Normalization, dimension reduction, and clustering
procedure was reproduced following the methods described in Yao
and colleagues (26). The mean UMI is 22,344 and the mean number
of genes is 3,994, with an average 3.2% of mitochondrial genes. For
the epithelial-specific analyses, we selected the epithelial cells as
annotated by Yao and colleagues and reran the Seurat pipeline with
the same parameter choices as in Yao and colleagues Following
PCA, we used the ElbowPlot function to identify 7 significant PCs,
which was used as input for the FindNeighbors and FindClusters
function at a resolution of 0.4, which resulted in six clusters.
RunTSNE function with the top 7 PCs was then implemented for
visualization.

Construction of the esophageal-specific regulatory network
The procedure for constructing a tissue-specific regulatory net-

work is described in detail in our previous publications (12, 35).
Briefly, the algorithm called SCIRA derives, for a given tissue-type,
a number of tissue-specific TFs and associated TF-regulons. The
TFs are identified by overexpression analysis comparing the given
tissue-type to all other tissue-types, using the large multi-tissue
RNA-seq expression dataset from the Genotype-Tissue Expression
(GTEX), encompassing 8,555 samples from 29 tissue types. To avoid
confounding by immune-and-endothelial cell infiltration in these
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bulk-tissue samples, the overexpression analysis is carried out again
by comparing the given tissue to blood and separately again to
blood vessels, which we found to be a very effective procedure (35).
Tissue-specific TFs are then defined as those overexpressed in the
given tissue (in our case esophagus, n ¼ 686 samples) compared
with all other tissue types (n ¼ 7,869) as well as when compared
with blood (n ¼ 511) and blood vessels (n ¼ 689). Independently
from this, SCIRA also applies a greedy 2-step partial correlation
framework to the same GTEX dataset to infer regulons for these
TFs. To generate the full esophageal network, we ran the following
commands:

reg.o  sciraInfReg(data.m, tfEID.v, sdth ¼ 0.25, sigth ¼ 1e-6,
spTH ¼ 0.01, pcorth ¼ 0.2, minNtgts ¼ 10, ncores ¼ 4)
net.o  sciraSelReg(reg.o, tissue.v, toi ¼ c("Esophagus"), cft ¼
c("Blood","Blood Vessel"), degth.v¼ rep(0.05,3), lfcth.v¼ c(log2(1.5),
log2(1),log2(1)));

Meaning of parameters and parameter choices are described in
the scira R-package (https://github.com/aet21/scira; refs. 12, 35).
Briefly, the function sciraInfReg generates the full set of regulons for
all human TFs. The function sciraSelReg identifies the tissue-specific
TFs (in our case esophageal), as described above, and then extracts
the regulons for these esophageal-specific TFs, resulting in the
esophageal regulatory network.

Definition of differentiation activity (TFA) and validation of the
esophageal-specific regulatory network

The differentiation activity of a given TF (the TFA value) is
obtained by linear regression of a sample’s expression profile (be it
bulk RNA-seq or scRNA-seq) against the binding regulon profile of
the TF, where positive and negative targets are encoded as þ1 and
−1, respectively, and with all non-targets set to 0. Specifically, we
define the TFA as the estimated t-statistic of this regression. For a
given data matrix of samples, the pseudocode is:

tfa sciraEstRegAct(data, norm ¼ c("z"),regnet.m ¼ net.o$netTOI);

The esophageal-specific regulatory network was validated in
two independent multi bulk tissue expression datasets: one is an
RNA-seq dataset from the ProteinAtlas project (36) and the other
is an Affymetrix microarray set from Roth and colleagues (37).
Specifically, we used the TF regulons to estimate differentiation
activity of the 43 esophageal TFs in each of these two datasets,
comparing the activity estimates for esophageal tissue against all
other tissue-types. In addition, we also downloaded chromatin
immunoprecipitation (ChIP-seq) profiles from the ChIP-seq atlas
(http://chip-atlas.org; ref. 38) and checked if the binding intensity of
the predicted regulon genes were higher than for non-regulon genes
using a Wilcoxon rank sum test. This analysis was performed for
TFs with available ChIP-seq data (EHF, ELF3, ELK3, FOXA1,
FOXQ1, GRHL2, HDAC1, KLF3, KLF5, MYC, RCOR1, RREB1,
SOX2, TEAD1, TFAP2A, TFAP2C, TP63, ZNF219). Because of
absence or low numbers of ChIP-seq data from normal esophagus,
binding intensities were averaged over all available ChIP-seq sam-
ples, excluding embryonic samples, hESCs, and predictions from
the STRING database. A third validation was performed in the
scRNA-seq (10×) human esophagus dataset from ref. 39. Here, we
estimated regulatory activity for all 43 esophageal TFs in over
50,000 cells encompassing 19 cell types. We compared the TFA
values in the esophageal epithelial cells to the surrounding stromal
cells using Wilcoxon-rank sum tests.

Power calculation
The calculation of SCIRA’s sensitivity (SE) to detect highly

expressed cell type–specific TFs in a given tissue type from the
bulk-tissue GTEX dataset is described in detail in ref. 35. Briefly, the
main parameters affecting the power estimate include the relative
sample sizes of the two groups being compared (n1 and n2), the average
expression effect size e (in effect the average expression fold-change) of
the cell type–specific TFs compared with all other cell types, which will
depend on the proportion of the cell type (w) within the tissue
of interest. Assuming that a given TF is more highly expressed in a
cell type that makes up only a proportion w of the cells in the tissue of
interest, then e ¼ log2[FC �wþ 1�(1�w)]/swhere FC is the average
fold change and s is a pooled SD. To estimate the average expression
fold-change FC for top DEGs between single-cell types in a tissue, we
analyzed expression data from purified FACS sorted luminal and basal
cells from the mammary epithelium (40), as described in detail in
ref. 35. Because FACS-sorted cell populations are still heterogeneous,
we thus expect the resulting fold change estimates to be conservative.
Using limma (41), we estimated FC to be 8 for the highest ranked
DEGs, and approximately 6 for the top 200–300 DEGs. We note that
these estimates are for a scaled basis where s ¼ 1. Sensitivity was
computed using the OCplus R-package.

The CancerStemID framework
Calculation of the transcription factor inactivation load

The main hypothesis underlying CancerStemID is that the number
of tissue-specific TFs displaying low differentiation activity in a given
cell is amarker of stemness and cancer risk. Given a scRNA-seq dataset
encompassing cells fromdifferent stages in cancer development, which
must include normal, preneoplastic (e.g., hyperplasia, dysplasia) and
cancer cells, we first estimate differentiation activity (TFA values, see
above) for all the tissue-specific TFs using the SCIRA algorithm (35).
We then identify those TFs that exhibit a significant decrease in
differentiation activity between the normal and preneoplastic cells.
For each of the preneoplastic cells, we also derive a binary profile over
the TFs that are significantly inactivated by comparing their TFA value
to the TFA values in the normal cells. Specifically, we estimate the
mean and SD of the TFA values over the normal cells and then
compute the z-score and associated P value for the TFA value of the
given preneoplastic cell as compared with the Gaussian defined by the
above mean and SD TFA values with negative z-scores and a P value <
0.05 are declared to be “hits,” resulting in a binary TF inactivation
matrix defined over TFs and preneoplastic cells. The transcription
factor inactivation load (TFIL) is then defined for each preneoplastic
cell by the number (or fraction) of hits. Of note, the number of TFs used
in the TFIL computation is thus determined by the data. Importantly,
we would not advise computing any TFIL if there is no statistical
evidence that most tissue-specific TFs display lower TFA in preneo-
plastic and cancer cells compared with normal. Indeed, by definition, a
significant number of TFs promoting differentiation should display
lower TFA in preneoplastic cells representing a condition such as
dysplasia, and a skew toward lower TFA can be assessed using a
binomial test. If the numbers of TFs displaying lower TFA in pre-
neoplastic cells is not significantly large, then any P value from the
binomial test would be nonsignificant and the TFIL should not be
computed.

Calculation of the cancer risk score
Given the TFA-matrix, we apply diffusion maps (42, 43) to this

matrix to infer the diffusion components (DC) and the Markov Chain
transition matrix (nearest neighbor graph). We note that since the
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TFA-matrix is defined over a relatively small number of features
(the tissue-specific TFs), that no dimensional reduction is necessary
prior to application of diffusion maps. The aim of this diffusion map
analysis is to ascertain the existence of a bifurcation, with one branch
defining invasion/cancer and the other representing a non-cancer fate
(e.g., differentiation). To estimate pseudotime, we use the following
procedure to obtain a root-cell, from which the two tip points (cancer
vs. noncancer) are then identified. From the Markov transition matrix
M defined over all cells, we define the submatrix ~M by only selecting
cells in the normal þ inflammatory state. This submatrix defines a
weighted subgraph, which is not necessarily connected. To identify
the main modules within this subgraph we use the walk-trap
community detection algorithm (44), to subsequently select the
largest community. This defines the root-state and the root-cell is
obtained as the cell that minimizes the median absolute deviation in
diffusion component space.

To estimate the cancer risk score, we compute the Pearson corre-
lation coefficient (PCC) matrix between each preneoplastic cell
(hyperplasia, dysplasia) and each cancer cell, where the PCCs are
calculated using the TFA matrix defined for the TFs that exhibit
significant downregulation between the normal cells and the preneo-
plastic ones. Subsequently, the PCCs are averaged over the cancer cells,
to arrive at the cancer risk score per cell. We note that the cancer risk
score and the TFIL are independent measures, because the TFIL for
each preneoplastic cell is estimated by comparison to the normal/
inflammatory state, whereas the cancer risk score reflects the similarity
to the cancer cells. Thus, a positive association between TFIL and the
cancer risk score is nontrivial and would indicate that preneoplastic
cells with a higher TFIL are more similar in regulatory activity phase
space to cancer cells. An alternative method to estimate the cancer risk
score is to compute the PCCs between the preneoplastic cells and the
cancer and cancer-free tip points identified via the diffusion map
analysis above. Both methods for estimating the cancer risk score yield
similar results on the datasets considered here.

Estimation of stemness
From the scRNA-seq data matrix and for each cell independently

we estimate a stemness/differentiation potency score using the
Correlation of Connectome andTranscriptome (CCAT)measure (45).
Briefly, CCAT is defined by the PCC between a single cell’s genome-
wide RNA-seq profile ~x (normalized and log-transformed) and the

connectivity (i.e., degree or number of neighbors) profile, ~k, of the
corresponding proteins as determined by a highly curated protein-
protein interaction (PPI) network from Pathway Commons:

CCAT ¼ PCC
�
~x;~k

�

CCAT is derived from our Diffusion/Signalling Entropy Rate (SR)
measure, also called SCENT (23), which is given by the formula

SR ~x; pð Þ ¼ � 1
maxSR

Xn

i¼1
pi

X

j2N ið Þ
pij log pij;

where pij are the entries of a stochastic matrix, and p is the invariant
measure, satisfying pP¼ p and the normalization constraint pT1¼ 1.
The stochastic matrix is given by the formula

pij ¼ xjP
k2N ið Þ xk

¼ xj
Axð Þi

;

where N(i) denotes the neighbors of protein i, and where A is the
adjacency matrix of the PPI network (Aij¼ 1 if i and j are connected, 0

otherwise, and withAii¼ 0). CCAT is amuch faster and scalable proxy
of differentiation potency than SCENT. The reason why CCAT
measures potency is that a cell of higher stemness tends to overexpress
network hubs, with many of these network hubs encoding ribosomal
proteins (23), a result we have validated across over 2 million cells and
28 scRNA-seq studies (45). The association between ribosomal gene
expression and differentiation potency has been observed across
different species and is independent of cell proliferation (46, 47). It
is important to observe that the three single-cell measures we compute
within the CancerStemID framework, that is, the stemness index
CCAT, the TFIL, and the cancer risk score, are all independent from
each other, and that any associations between them are nontrivial.

Calculation of cell-cycle scores
To identify single cells in either the G1–S or G2–M phases of the

cell-cycle we followed the procedure described in Tirosh and col-
leagues (48). Briefly, we used genes whose expression is reflective of
G1–S or G2–M phase. A given normalized scRNA-seq data matrix is
then z-score normalized for all genes present in these signatures.
Finally, a cycling score for each phase and each cell is obtained as the
average z-score over all genes present in each signature.

Relation between stemness, TFIL, and cell-cycle scores
As shown by us previously (23), the association between stemness

(as measured with SCENT or CCAT) and cell proliferation is non-
linear: proliferating cells generally have high stemness scores, but
noncycling cells can also attain high stemness values. Thus, prolifer-
ation is a confounder that needs to be adjusted for. In this work, we
assess the associations between stemness, TFIL and cancer risk by
including the two cell-cycle scores as covariates in the linear regres-
sions. In addition, we identify noncycling cells as those with an average
cell-cycle score < 0, and recompute linear regressions between the
single-cell measures of interest using only such noncycling cells.

Analysis of bulk-tissuemRNAexpression fromnormal and ESCC
samples

One dataset GSE23400 (paired ESCC and normal adjacent samples,
n¼ 53) is derived from The Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi; refs. 49, 50). The other data-
set is an in-house database of gene expression consisting of 121 ESCC
normal adjacent pairs and an independent set of 159 ESCC tumor
samples, i.e., a total of 121 normal samples and 280 ESCC tumor
samples (34, 51). In all cases, differential expression was performed
using Wilcox rank sum tests.

Whole-genome bisulfite sequencing of Cohort 2 ESCC patients
We performed whole-genome bisulfite sequencing (WGBS) for

ESCC and paired normal tissues derived from 26 patients in Cohort
2. Fresh frozen sample regions of ESCC and normal esophageal
epithelium were collected with laser capture microdissection using
Leica model LMD7000 Laser Microdissection Microscope (Leica
Microsystems) after crystal violet (Sigma-Aldrich, catalog no. 3886)
staining and pathologic reviewing. WGBS libraries were prepared
following NEBNext Enzymatic Methyl-seq Kit direction (New
England Biolabs, catalog no. E7120S/L). The average depth of
the sequencing libraries was approximately 26X. WGBS data
were mapped to hg38 genome and methylation calling was per-
formed using Bismark software (version 0.19.0; ref. 52). Dupli-
cation was removed by applying Picard tools (version 2.4.1; http://
broadinstitute.github.io/picard/). DNA methylation levels of CpGs
within 500-bp upstream of the transcription starting sites of the
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esophageal-specific TFs were extracted for analysis. The overall
comparison of promoter methylation was performed with paired
Student t test using the averaged DNA methylation (DNAm) levels
across all promoter CpGs. For CpG-specific differential methylation
analysis, we used the Wald test as implemented in the dss R-package
(version 2.38.0; ref. 53). Differentially methylated CpGs between
ESCC and paired normal tissue (n ¼ 26 pairs) were defined by
requiring a significant Wald test P < 0.01 and a difference in average
DNAm (delta) of at least 0.1. To assess statistical significance over
the whole promoter, we used a paired t test comparing the mean
DNAm value over all DMLs in the promoter between the 26 ESCCs
and 26 matched normals. Of note, the latter test requires directional
DNAm changes to be more consistent to attain statistical signifi-
cance and is therefore more stringent.

Analysis of genomic alterations in Cohort 2 ESCC patients
Somatic mutation and copy-number variation (CNV) profiles of

the 43 TFs were obtained from Zhang and colleagues (34). Briefly,
genomic DNA from blood, adjacent normal tissue and tumor
samples was extracted using the QIAamp DNA mini Kit (Qiagen).
The sequencing libraries for WGS were constructed using
Tn5 transposase and sequenced on HiSeq XTen (Illumina) with
2 �150 bp paired-end mode. WES libraries were constructed using
NEBNext Ultra DNA Prep Kit for Illumina 760 (New England
Biolabs), followed by exome enrichment using SureSelect Human
All Exon V6 (Agilent Technologies). The WES libraries were
sequenced on NovaSeq 6000 (Illumina) with 2�150 bp paired-
end mode. The mean sequencing depth for WES samples was about
150X (for tumor tissues) while the depth was about 1X for WGS
samples. After WES quality control (34), somatic mutations were
called with mutect2 workflow of GATK and annotated by Annovar
software. CNV analysis was performed following baseqCNV pipe-
line and significant CNVs at gene level were detected by GISTIC
2.0 algorithm, as described in Zhang and colleagues (34).

Analysis of lung and colon scRNA-seq datasets
We obtained 4 scRNA-seq 10× Chromium datasets profiling

sufficient numbers of normal epithelial and cancer epithelial cells,
two from lung tissue (54, 55), and the other two from colon (56).
One of the lung-tissue sets derived from lung adenocarcinoma
(LUAD) patients (LUAD1) and processed annotated count data
was download from GEO (GSE131907; ref. 54). This set contained
3,703 normal lung epithelial and 32,764 lung cancer epithelial cells.
We followed the same Seurat pipeline as for our esophageal sets,
which resulted in 3,614 normal cells (521 alveolar type-1, 2009
alveolar type-2, 650 ciliated, and 434 club cells), 6,255 lung tumor
cells, and 2,896 metastatic cells from adjacent lymph nodes. The
other lung tissue set (LUAD2) derived from both LUAD and LSCC
patients and .Rds files containing the processed data were down-
loaded from ArrayExpress (E-MTAB-6149). After quality control, a
total of 52,698 single cells remained, of which, 1,709 were annotated
as alveolar, 5,603 as B cells, 1,592 as endothelial cells, 1,465 as
fibroblasts, 9,756 as myeloid cells, 24,911 as T-cells, and 7,450 as
tumor epithelial cells. The two colon 10× sets derive from the same
study (56), and processed annotated count data were downloaded
from GEO (GSE132465, GSE144735). The first colon set (COAD1)
contained 1,070 normal epithelial and 17,469 cancer cells, whereas
the second one (COAD2) comprised 1,144 normal epithelial and
5,024 cancer cells. Count data were processed with the Seurat
pipeline. In addition to these two 10× colon sets, we also analyzed
a scRNA-seq Fluidigm C1 dataset from Li and colleagues (57), a

study profilingmalignant andnonmalignant colon epithelial cells from
11 patients. We processed these data as described previously (35).
Briefly, we downloaded the normal mucosa and tumor epithelial cell
FPKM files from GEO under accession number GSE81861. In total,
there were 160 and 272 normal and tumor epithelial cells.

Data availability
The raw sequencing data of our human Cohort 1 scRNA-seq

data is available from the Genome Sequence Archive of Beijing
Institute of Genomics, Chinese Academy of Sciences (https://ngdc.
cncb.ac.cn/gsa/) with accession number HRA000776 (GSA-Human
subAccession number). The raw sequencing data of the human
Cohort 2 scRNA-seq data is available from GSA (https://bigd.big.ac.
cn/gsa) under accessing number HRA000195. The gene-by-cell
count matrix of Cohorts-1 and 2 are available from GEO under
accession numbers GSE199654 and GSE160269. Gene expression
matrix of ESCC and paired adjacent normal samples is available
from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) with accession number GSE160269. The raw sequencing
data and processed gene expression matrix of the mouse model
scRNA-seq data have been deposited in GSA under the accession
number CRA002118. The GTEX bulk RNA-seq dataset (TPMs) was
downloaded from https://commonfund.nih.gov/GTEx/data. The 10×
scRNA-seq normal cancer datasets in lung and colon were obtained
from either GEO or ArrayExpress (www.ebi.ac.uk) with following
accession numbers: GSE131907, E-MTAB-6149, GSE132465,
GSE144735. All other data supporting the findings of this study
are available within Supplementary Information files and from the
corresponding author upon reasonable request.

Code availability
An R-package CancerStemID with a vignette illustrating the code

functionality on the mouse ESCC 10× dataset, and an executable
R-markdown file showcasing additional analyses on the humanESCC-
cohort-1 10× scRNA-seq and human 10× Visium datasets are freely
available from https://figshare.com/projects/CancerStemID_/112371.
On the same figshare site, we also provide R-scripts for reproducing
source data and results on the human and mouse ESCC datasets
analyzed here. The SCIRAR-package for estimating TF differentiation
activity is available from https://github.com/aet21/scira. The SCENT
R-package for estimating stemness is available from https://github.
com/aet21/SCENT.

Ethics approval and consent to participate
This study was approved by the Institutional Review Boards

of Cancer Hospital, Chinese Academy of Medical Sciences (20/
069–2265). Informed consent was obtained from each patient, and
clinical information was collected from medical records.

Results
The CancerStemID framework: rationale

CancerStemID is based on the hypothesis that the differentiation
state of a cell can be inferred by estimating the regulatory activity of
the TFs that control differentiation within that cell lineage. This is a
reasonable assumption since differentiation into a specific cell-
lineage is characterized by overactivation of lineage-specific TFs,
with these same TFs generally displaying low basal levels of
differentiation activity in the corresponding stem and progenitor
cells (Fig. 1A; ref. 58). It follows that preneoplastic cells in which
lineage-specific TFs exhibit low differentiation activity may exhibit
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a higher stemness and cancer risk, reflecting the cell-of-origin that
undergoes positive selection during cancer progression (Fig. 1B).
The CancerStemID framework thus involves two steps: (i) identi-
fication of the key TFs and inference of their differentiation activity
(TFA) in single-cells, and (ii) quantification of the overall level of
dedifferentiation, which we posit identifies cellular states that
progress to the invasive cancer stage (Fig. 1C). To identify the
tissue-specific TFs and to estimate their TFA values we use the
SCIRA algorithm (35), a machine-learning method that infers TFs
and associated regulons from a large and appropriately powered
multi-tissue gene expression dataset while adjusting for cell type
heterogeneity. Differentiation activity of TFs in single cells is then
derived using the regulon set of each TF. As shown by a number of
studies (35, 59, 60), this regulon-based approach leads to improved
inference of differentiation activity in the context of scRNA-seq
data, mainly due to the high dropout rate of such data, which

prevents reliable inference of TF regulatory activity from measured
TF expression levels. In the second step, we quantify the overall
degree of differentiation activity of a cell by direct comparison of the
inferred TFA values relative to an appropriate normal state. In
effect, the number of tissue-specific TFs displaying low differenti-
ation activity relative to this normal state, a quantity we call TFIL, is
a direct proxy of the dedifferentiation state of the cell (Fig. 1C).

Construction and validation of an esophageal-specific
regulatory network

To test CancerStemID in ESCC, we first aimed to identify esoph-
ageal-specific TFs and their regulons. To this end, we applied
SCIRA (35) to the large multi-tissue GTEX expression dataset (61),
encompassing 8,555 samples and 29 tissue types, including 686 normal
esophageal tissue specimens, while adjusting for the variation in
immune-cell infiltration between samples and tissues (Materials and
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Figure 1.

Rationale and the CancerStemID algorithm. A, Focusing on normal development and differentiation, tissue-specific TFs exhibit increased differentiation activity
(TFA) as cells differentiate from adult stem cells to multi-or-unipotent progenitors and finally to fully differentiated cells, as shown. B, Given a population of
preneoplastic cells, these cells exhibit heterogeneity in terms of their TFA profiles. The underlying hypothesis is that those preneoplastic cells with a TFA profilemore
similar to that of the adult or progenitor states of the tissue aremore likely to be selected for during cancer progression, in line with the Cancer Stem Cell hypothesis.
C, CancerStemID is a computational framework applicable to scRNA-seq data generated from different stages in cancer progression, aimed at identifying the
preneoplastic cells that are under positive selection, i.e., at highest risk of cancer progression. The CancerStemID algorithm first estimates transcription factor
differentiation activity (TFA) for tissue-specific TFs across all single cells in order to identify the TFs that exhibit reduced differentiation activity during cancer
progression. For each cell, we also independently estimate a (i) differentiation potency (dedifferentiation) score using the CCAT/SCENT algorithm, (ii) a TFIL
representing the number of tissue-specific TFs that are inactivated in a given cell, and (iii) a cancer progression (or cancer risk) score. The cancer progression score is
derived by applying diffusionmaps to the TFAmatrix, so as to infer lineage trajectories thatmap to cancer and noncancer fates, estimating for each preneoplastic cell
a relative probability of diffusing to the cancer fate, thus defining a cancer progression score. The main hypothesis is that a preneoplastic cell with a higher TFIL is
associated with an increased stemness and cancer progression score.
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Methods). Our power calculation indicated more than 90% sensitivity
to detect esophageal-epithelial specific TFs (Materials and Methods;
Supplementary Fig. S1A). SCIRA inferred a regulatory network con-
sisting of 43 esophageal-specific TFs and 1,136 target/regulon genes

(Fig. 2A; Supplementary Data File S1; Materials and Methods), with
an average of 42 regulon-genes per TF. Several of the identified TFs
(e.g., TP63, KLF5, SOX2, FOXE1, PAX9, EHF) have established roles
in squamous epithelial differentiation of the esophagus (62–64).
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Construction and validation of the esophageal-specific regulatory network. A,We applied the SCIRA algorithm to the large multi-tissue GTEX expression dataset,
encompassing 686 esophagus and more than 7,500 samples from other tissue-types, to infer an esophageal-specific regulatory network consisting of 43
esophageal-specific TFs (black squares) and their regulon genes (red circles). The regulon associatedwith each TF is depicted with a distinct background color, with
the regulon genes representing direct binding and indirect downstream targets. The regulons are then used to estimate regulatory activity of the TFs (TFA) in an
independent sample (bulk or single-cell RNA-seq profile). B, Validation of the esophageal-specific TF regulons in the 10× scRNA-seq esophageal tissue dataset from
theHCA. Left, UMAPdepicts the clusters representing different cell types in the humanesophagus. Right, UMAPcolors the cells according to the averageTFAover the
43 esophageal TFs.C,Violin plots for twoof the esophageal TFs (ELF3, EHF) displaying their estimatedTFA levels across all cells from the humanesophagus stratified
according to whether the cell is epithelial, an immune cell, a fibroblast, or an endothelial cell. P value derived from a one-tailed Wilcoxon rank sum test comparing
epithelial with the other cell types. D,Diagram displaying for each of the 43 esophageal TFs if they are inactivated/downregulated (DN) or activated/overexpressed
(UP) according to differential TFA or differential expression (DE). In the case of differential expression, P values were derived from aWilcoxon rank sum test. In the
case of TFA values, because these do not have dropouts, we used a t test to estimate P values.
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We validated the 43 esophageal-specific TFs and regulons in two
independent multi-bulk tissue expression datasets (Supplementary
Fig. S1B and S1C; refs. 36, 37), using ChIP-seq data from the
ChIP-seq Atlas (Supplementary Fig. S1D; ref. 38), and in 10×
scRNA-seq data of normal esophageal tissue (50,000 cells and 19
cell types) generated as part of the Human Cell Atlas (HCA;
Fig. 2B–D; see Materials and Methods; ref. 39). By estimating
differentiation activity of the 43 esophageal TFs in this normal
esophagus HCA set, we verified that the average differentiation
activity (TFA) was highest in the epithelial clusters, and that 81%
(i.e., 35) of our TFs displayed a significantly higher activity in
epithelial cells (Fig. 2B–D). Within the epithelial compartment, the
average TFA correlated with differentiation state, being lowest and
highest for cells in the basal and upper epithelium layers, respec-
tively (Fig. 2B; Supplementary Fig. S2A). To benchmark this
association with differentiation state, we separately estimated
potency of each cell using CCAT (45), a model of single-cell potency
rooted in the concept of diffusion network entropy that we have
previously and very extensively validated across different cellular
lineages and species (human and mouse), encompassing over 28
scRNA-seq studies and 2 million cells (23, 45). Applying CCAT to
the esophageal HCA data also confirmed that basal cells exhibited
higher potency values compared with the more differentiated cells
of the stratified and upper epithelium, yet unlike TFA, the mono-
tonic linear pattern was less evident and only appreciable when
focusing on noncycling cells (Supplementary Fig. S2B), indicating
that TFA is less confounded by cell-cycle state and thus a more
reliable proxy of differentiation state than CCAT.

Esophageal-specificTFsdisplay reduceddifferentiation activity
in preneoplastic cells

Next, we performed scRNA-seq (10× Chromium) profiling in
cancer and adjacent noncancer tissue specimens derived from
14 patients with ESCC (“Cohort 1”), representing four different
stages in cancer development including normal/inflammatory
(NOR), LGIN/HGIN, and ICA (see Materials and Methods;
Supplementary Table S1; Fig. 3A). After stringent quality control,
batch correction and processing with Seurat, we obtained over
110,000 cells, of which, 3,178 were annotated as epithelial (Fig. 3A;
see Materials and Methods). This included 1,176 nonmalignant
epithelial cells, allowing us to explore the dynamics of differenti-
ation activity change across preneoplastic stages. Dimensional
reduction and graph-based clustering over the most variable genes
revealed clusters that correlated with disease stage (Fig. 3B), but a
much stronger association with stage was seen when performing
PCA on the estimated differentiation activity matrix over the 43
esophageal-specific TFs, with PC-1 clearly discriminating normal
inflammatory and LGIN cells from HGIN and ICA (correlation test
P < 10–90; Fig. 3C). In line with this, we observed that 25 of our 43
esophageal-specific TFs exhibited a significant decrease of activity
in HGIN and ICA cells (Fig. 3D), representing a significant skew
towards lower differentiation activity (binomial test, P ¼ 3�10–5;
Fig. 3E). A Monte-Carlo randomization analysis of the regulons
further demonstrated that this number of less active TFs could
not have arisen by random chance (see Materials and Methods;
Supplementary Fig. S3A). By focusing on subsets of patients for
which both normal/inflammatory and HGIN/ICA cells were pro-
filed, we were also able to exclude batch effects (Supplementary
Fig. S3B). Confirming that batch effects were not driving these
patterns, results were validated in an independent 10× scRNA-seq
dataset comprising 60 patients with ESCC (“Cohort 2,” see Materials

and Methods; Fig. 3D and E). We observed good agreement between
the cancer versus normal differential activity patterns derived from the
two independent cohorts (Fisher one-tailed test P¼ 0.006; Fig. 3F). Of
note, these skews toward lower differentiation activity were not
observed at the level of TF expression, consistent with previous
demonstrations that regulons improve the sensitivity to detect differ-
entiation activity changes as compared with TF expression (Fig. 3E;
ref. 35). In support of this, we note that tumor versus normal differential
activity patterns derived from the scRNA-seq data weremore consistent
than differential expression, when compared with the differential
expression patterns seen in corresponding bulk tissue RNA-seq datasets
(Supplementary Fig. S3C and S3D; Supplementary Table S2).

Of note, some of the TFs displaying reduced differentiation
activity (e.g., TRIM29, EHF, PAX9) have been implicated as tumor
suppressors in squamous cell carcinoma including ESCC (65–67).
Other TFs like TP63 and SOX2, which have been implicated as
oncogenes in ESCC (68–72), displayed increased expression in
cancer at both single-cell and bulk RNA-seq levels, whilst simulta-
neously displaying reduced differentiation activity (Supplementary
Fig. S3C), suggesting that their cistromes undergo reprogramming in
ESCC. To confirm this, we observed that a list of 152 TP63 and SOX2
targets derived from ESCC bulk RNA-seq and ChIP-seq data (see
Materials and Methods; refs. 68–72), displayed consistent upregula-
tion in our scRNA-seq data (Supplementary Fig. S4A and S4B).
Moreover, none of these 152 targets overlapped with our TP63/SOX2
regulon target genes, a clear reflection that the latter solely measure
TP63/SOX2’s role in esophageal differentiation. These data establish
that esophageal-specific TFs display reduced differentiation activity
not only in ESCC but also in a stage preceding cancer development,
with TP63/SOX2’s cistromes reprogrammed to acquire oncogenic
functions (68–72). Of note, one of the few TFs displaying consistent
increased TFA in the two cohorts was MYC (Fig. 3D). To shed light
on the potential significance of this, we observed that the 31 genes
making up our MYC regulon are enriched for ribosome biogenesis
(Supplementary Table S3), which has been proposed to be a marker
of stemness (23, 46).

Validation in a mouse model of esophageal cancer
development

To further validate our findings in ESCC, we next analyzed scRNA-
seq data of 36,114 CD45� cells collected at six well-defined stages of
ESCC development in mouse (26). In this model, ESCC is induced
by 4-nitroquinoline 1-oxide (4NQO), a chemical carcinogen that
mimics ESCC development in humans (26). To justify application of
our esophageal TF regulons derived from human data to mouse
scRNA-seq data, we first checked that the majority of the 43 TFs
(n ¼ 31) displayed a higher TFA in the normal epithelia compared to
immune and stromal cells (Supplementary Fig. S5A–S5C). For each of
these 31 TFs we estimated their TFA in each of 1,760 epithelial cells,
encompassing cells from the normal inflammatory state (NOR/INF,
n ¼ 392), hyperplasia (HYP, n ¼ 383), dysplasia (DYS, n ¼ 187),
carcinoma in situ (CIS, n ¼ 163), and ICA (n ¼ 635; Supplementary
Fig. S5D). Mapping the dynamic changes between subsequent disease
stages revealed two waves of reduced differentiation activity: one
between the inflammatory and hyperplasia stages, and another
between CIS and invasive cancer (Supplementary Fig. S5E). Over the
whole time course, we observed a clear skew, with 71% of the 31 TFs
exhibiting significantly lower differentiation activity during tumor
progression (binomial test, P ¼ 0.005; Supplementary Fig. S5F). A
similar but nonsignificant skew was also observed at the level of
TF-expression (Supplementary Fig. S5G and S5H).
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Figure 3.

Reduced differentiation activity of esophageal-specific TFs precedes cancer development. A, scRNA-seq profiling on tumor and normal adjacent tissue from
14 patients with ESCC. UMAP diagram depicts 115,930 cells with clusters annotated to different cell types. B, The first tSNE-plot displays six different epithelial
subclusters. The second tSNE plot colors cells by disease stage. C, PCA scatterplot (PC1 vs. PC2), as derived by applying PCA to the transcription factor
regulatory activity (TFA) matrix of 43 esophageal TFs and a total of 3,178 epithelial cells. Cells are colored by disease stage. Density plot beneath
PC1 axis depicts the distribution of cells of each disease stage according to PC-1 weight. P value is from a Pearson correlation test between PC1 and disease
stage (1 ¼ N/INF, 2 ¼ LGIN, 3 ¼ HGIN, 4 ¼ ICA). D, Heatmaps of TFA for the 43 esophageal TFs across the four main disease stages in Cohorts 1 and 2 as shown.
For each disease stage, the TFA over all cells in that stage were averaged. Color bar labeled “t(TFA)” displays the t statistic of a linear regression between TFA
and disease stage (encoded as an ordinal variable, 1 ¼ N/INF, 2 ¼ LGIN, 3 ¼ HGIN, 4 ¼ ICA), and P values shown derive from this t test. In the case of Cohort 2,
there were only two disease stages (1 ¼ N, 2 ¼ ICA). E, Barplots displaying the number of significantly inactivated/downregulated (DN) and activated/
overexpressed (UP) TFs in Cohorts 1 and 2 according to differential TFA or differential expression. F, Scatterplot of the t statistics of differential TFA between
ICA and N for Cohort 1 versus Cohort 2. P value is from a linear regression. The number of TFs significantly inactivated in both Cohorts 1 and 2 is displayed in blue.
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Reduceddifferentiation activity is observed relative to thebasal
epithelium

Given that normal esophageal basal cells displayed much lower
TFA compared with normal cells from the differentiated upper
epithelium (Fig. 2B; Supplementary Fig. S2A), we reasoned that the
lower differentiation activity displayed by esophageal-specific TFs
during cancer progression could reflect the increased enrichment of
the basal cell-of-origin population. To explore this, we reran the
differential TFA-analysis using only a subset of normal cells that we
could confidently classify as basal. This was done in our human

ESCC Cohort 2 for which using less stringent quality control
thresholds, a sufficient number of normal epithelial cells (n ¼
183) were obtained. On the basis of four well-known esophageal
basal markers (TP63, KRT5, KRT14, KRT15), we identified 36 basal
cells, which reassuringly displayed a significantly higher potency
than the 147 nonbasal ones, thus validating our assignments
(Supplementary Fig. S6A and S6B). Despite the relatively small
number of basal cells, esophageal-TFs still displayed a clear trend
toward reduced differentiation activity in preneoplastic and cancer
cells (Supplementary Fig. S6C; binomial test, P < 0.0001). To
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Figure 4.

Spatial transcriptomic analysis reveals
reduced TFA relative to normal basal
cells. A, Images showing histology
(top) with annotated ST spots (bot-
tom) mapped to corresponding epi-
thelial tissue types derived from LZE22
patient. The number of spots in each
category is indicated. Epithelial region
(separated from stromal region with
yellow solid lines) and basal region
(area between yellowdashed and solid
lines) were annotated after pathologic
review. Average TFA of each ST spot is
displayed in color scale in relative
measures. B, A violin plot showing the
distribution of TFA across NOR, HGIN,
and ICA spots (n ¼ 141, 313, and 613,
respectively). P values were computed
with an unpaired Student t test. C,
Heatmap displaying the average TFA
of the 43 esophageal-specific TFs,
averaged over normal basal, HGIN, and
ICA states. The number of spots in each
stage is indicated. Statistics of differ-
ential TFA are indicated in the color bar
below. P values were computed with
an unpaired Student t test. Scale bar,
500 mm. D, Heatmap displays the
signed statistical significance of asso-
ciation between differentiation activity
(TFA) and cancer progression, for the
43 esophageal-specific TFs across six
independent scRNA-seq studies with
the 10� Visium data results displayed
separately for each of the 3 patients.
For the 10�Visium datawe display the
results for each patient separately
because for the 10� Visium data we
had enough normal epithelial spots for
the comparison within each patient
to be meaningful. The values in this
heatmap represent the sign of the t-
statistic multiplied by -log10(P), where
P is the associated P value. Blue colors
denote reduced TFA during ESCC pro-
gression. The color bar to the right
labels the number of studies in which
the TF displays reduced TFA. E, Plots
compare the number of TFs observed
to exhibit reduced differentiation
activity in all 6 studies (left) and in at
least 5 studies (right) with the corre-
sponding binomial null distributions.
Green vertical line indicates the
observed numbers and the P value is
from a one-tailed binomial test.
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Figure 5.

Transcription factor inactivation load correlateswith stemness and cancer risk.A,Adifferential TFA analysiswas performedbetween epithelial cells from the normal/
inflammatory stage and cells from the LGIN/HGIN (Cohort 1). Heatmap displays a binary matrix [black, inactivation event; gray, not significant (n.s.)] depicting the
inactivation events for each cell and TF. For a given LGIN/HGIN cell, inactivation of a TF is defined by a significantly lower activity in that cell compared with all N/INF
cells using aBonferroni-adjustedP<0.05 threshold, andwhere theP value is computed froma cells linearmodel. TFA is ranked in increasing order of TFIL, where TFIL
is defined as the number of TFs displaying an inactivation event in that cell. TFs labeled in blue are those exhibiting a significantly lower activity in LGIN/HGIN
compared with normal/inflammatory stage. B, Violin plots display the estimated stemness scores using the CCAT measure for epithelial cells in the normal (N) and
ICA for Cohort 1. P values derived from a one-tailed Wilcoxon rank sum test. C, Violin plots displaying the estimated stemness score (CCAT) against the TFIL in the
LGIN/HGIN cells from Cohort 1. P values derived from a linear regression between CCAT and TFIL. D, Smoothed scatterplot of CCAT versus the computed cell-cycle
score for the LGIN/HGIN cells. P values are from a linear regression between CCAT and cell-cycle score. Violin plot to the right is as inC but nowonly using noncycling
cells, that is, cells with a negative cell-cycle score. E, Three-dimensional diffusion map inferred by applying the diffusion maps algorithm to the TFA-matrix defined
over the 43 esophageal TFs and 3,178 epithelial cells (Cohort 1). Cells are colored according to disease stage, as shown. Black box contains the root state, that is, a cell
from the normal stage that has highest centrality. Red boxes denote the two inferred tipping points, labeling cancer-free and cancer endpoints. Below the diffusion
map, we display a two-dimensional density plot encompassing all LGIN/HGIN cells, and a cancer risk score was obtained for each of these cells by their proximity to
the cancer fate. F, Violin plot displays the estimated cancer progression score for epithelial cells in LGIN/HGIN stage as a function of TFIL. P values derived from a
linear regression.G, Smoothed scatterplot displays the relation between the cancer progression and cell-cycle scores. P values derived from a linear regression. Right
panel is like F, but now using only noncycling cells, defined as cells with a cell-cycle score less than 0.
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Figure 6.

Differential TFA of esophageal-specific TFs is associated with differential DNAm. A, Top, the y-axis of the barplot represents for each TF, the fraction of
promoter CpGs that display significant differential methylation between the 26 ESCCs and their 26 matched normals (Cohort 2) as assessed using a Wald test
(P < 0.01). TFs with at least one significantly hypermethylated promoter CpG site are displayed to the left of the dashed line (n ¼ 19). Significant differences at
the level of each TF promoter were assessed using a paired Student t test (P < 0.01) comparing the mean DNAm values over the promoter. Significant TFs are
shown by annotating the TF names in purple or yellow depending on whether it is hyper- or hypomethylated, respectively. Overall significance of differences in
DNAm levels for all 43 TFs was calculated with a paired Student t test (P ¼ 7.2 � 10–16). Bottom, heatmap displays the frequency of nonsynonymous somatic
mutations and gene copy number variations across the ESCC patients. B, Heatmap displays the methylation profiles of CpGs mapping to promoters with
significant hypermethylation (red) or hypomethylation (blue) in at least five patients. C, Violin plots display the TFA levels of PAX9, EHF, and ELF3 for
epithelial cells derived from normal esophageal tissue (N), tumor cells from patients with no significant promoter hypermethylation (UC), and tumor cells from
patients with significant promoter hypermethylation (MC). The number of single cells in each category is indicated. P values were computed with an unpaired
Student t test. (Continued on the following page.)
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validate and strengthen these findings with increased cell numbers,
we performed STs with the 10× Visium platform on normal,
squamous dysplasia and invasive cancer samples from three
patients with ESCC of Cohort 1 (see Materials and Methods).
Across all three patients, this revealed a total of 4,208 epithelial
spots (“Epi spots”), distributed as 477 normal, 945 inflammatory,
243 LGIN, 527 HGIN, and 2016 ICA (Fig. 4A; Supplementary
Fig. S6D and S6E). From the normal/inflammatory stages, we
confidently identified by histology (three separate pathologists
working independently with a 20� microscope) a total of 621 basal
spots located in the vicinity of the basal membrane or papillae
(Supplementary Fig. S7A and S7B), which we subsequently con-
firmed by ST expression of basal-specific markers (Supplementary
Fig. S8). Unsupervised clustering of annotated epithelial, stromal,
and immune-cell spots validated our assignments, revealing clear
separability, thus confirming high purity of our epithelial spots
(Supplementary Fig. S9A–S9E). Estimating TFA values in the
normal basal, dysplasia and cancer tissue blocks of each patient,
revealed a highly significant and consistent pattern of overall
reduced differentiation activity in cancer cells (Fig. 4A and B;
Supplementary Fig. S6D and S6E), with TFA patterns of the
individual TFs confirming an overall decrease in differentiation
activity relative to the normal basal state (Fig. 4C; Supplementary
Fig. S6D and S6E). Thus, these data indicate that the reduced
differentiation activity of esophageal-TFs during cancer progression
is not only driven by the corresponding enrichment of the basal cell-
of-origin. Combined across the two human ESCC cohorts, the
mouse ESCC dataset and the Visium assays from three patients,
we observed a total of 8 TFs displaying consistent reduced differ-
entiation activity during cancer progression in all six of these
datasets, with 19 TFs doing so in at least five datasets (Fig. 4D),
results that can not be explained by random chance (Fig. 4E).

Reduced differentiation activity correlates with stemness and
cancer risk

Next, we aimed to determine whether cells exhibiting the lowest
differentiation activity in a preneoplastic cell population define tran-
scriptomic states that progress to cancer. Although assessing this
would require prospective lineage-tracing, one can obtain supportive
evidence for this computationally. First, we devised a method to call
“TF inactivation” events in each of the noncancerous LGIN/HGIN
cells from our human scRNA-seq data (Cohort 1), by comparing the
estimated TFA in the cell to those of the normal inflammatory state
(see Materials and Methods). For each noncancerous cell, we thus
obtained a “TFIL,” representing the number of esophageal-specific TFs
displaying low differentiation activity in that cell (Fig. 5A). Indepen-
dently from this, we also estimated the stemness of each cell using
CCAT, and consistent with the cancer stem-cell hypothesis, ESCC cells
from Cohort 1 exhibited higher stemness (i.e., lower commitment and
differentiation) than normal cells (Fig. 5B). Importantly, we observed
a strong nontrivial correlation between CCAT and TFIL (Fig. 5C),
thus establishing a direct connection between potency and differen-

tiation activity. Of note, the CCAT potency measure also exhibited a
strong association with cell proliferation, yet critically, the association
is nonlinear, indicating that noncycling cells can also exhibit moderate
to high potency (Fig. 5D). We verified that the association between
stemness andTFIL is independent of cell proliferation (Supplementary
Table S4), and in line with this, noncycling cells with a high TFIL
exhibited a higher stemness than noncycling low TFIL ones (Fig. 5D).
To test whether the TFIL and stemness are associated with cancer
progression, we independently estimated, for each of the noncancer-
ous cells, a cancer progression score, reflecting the closeness of the cell’s
position to the cancer state in the differentiation activity (TFA) phase
space, whichwe inferred by applying diffusionmaps (seeMaterials and
Methods; Fig. 5E; refs. 42, 43). We note that the diffusion map
naturally predicted a bifurcation with cancer cells clustering almost
exclusively at one end of diffusion component-1 (DC1) and with
noncancer cells distributed more evenly (Fig. 5E). As with the stem-
ness measure itself, the cancer progression score increased with the
TFIL per cell (Fig. 5F), correlating nonlinearly with cell proliferation
but also independently of it (Fig. 5G; Supplementary Table S4). All
these findings were replicated with high statistical significance in our
ESCCmouse model (Supplementary Fig. S10A–S10C; Supplementary
Table S4).

Reduced differentiation activity correlates with DNA
methylation changes

To explore whether changes in differentiation activity are asso-
ciated with DNA alterations, we performed whole-genome sequenc-
ing (WGS) and laser capture microdissection–based whole-genome
bisulfite-sequencing (LCM-WGBS) on 26 ESCC bulk samples from
Cohort 2, and on corresponding matched normal adjacent tissue
from all 26 patients (see Materials and Methods). Focusing on
promoter DNA methylation (DNAm) within 500-bp upstream of
the transcription starting site, we observed that DNAm levels were
higher in ESCC compared with paired normal adjacent tissue
(Fig. 6A; Supplementary Table S5). Among the 1,478 CpGs located
in the promoter regions of the 43 TFs, there were 290 regions
encompassing 19 TFs that displayed a significant increase in
methylation in ESCC compared with matched normal tissue (Wald
test, P < 0.01). Hypermethylation was recognized at 87% of sites
with significant DNAm changes, with the most frequent changes
occurring at PAX9 (48.5%), ELF3 (37.2%), DES (34.4%), EHF
(30.8%), and STON1 (28.0%; Fig. 6A and B). In contrast, genomic
alterations were not as significant, with nonsynonymous mutations
and copy-number deletions distributed sporadically at relatively low
frequencies (<10%; Fig. 6A). Comparing the previously estimated
TFA values between normal and cancer cells from patients with and
without TF promoter hypermethylation revealed that for 11 of the
19 hypermethylated TFs, differentiation activity was significantly
lower in the cancer samples with TF promoter hypermethylation
(Fig. 6C and D). By applying our SEPIRA algorithm (12) to each
WGBS sample, with DNAm values in each profile summarized at the
level of genepromoters, we estimatedTFAvalues for a total of 11TFs that

(Continued.) D, Heatmap displaying the significance of differential TFA between tumor cells from patients with and without significant promoter
hypermethylation and for the 19 TFs displaying significant hypermethylation in ESCC compared with normal adjacent tissue (i.e., the significant TFs in
barplot of A). E, Boxplots displaying correlation between the CCAT potency/stemness index (y-axis) and TFIL (x-axis) in the cancer cells from ESCC Cohort 2.
P value is from a linear regression. F, Violin plots compare the CCAT potency/stemness values with NOTCH1 and TP53 mutation status as assessed in ESCC
Cohort 2. Note that somatic mutations were only assessed at the bulk tissue level within each ESCC patient, hence for patients carrying mutations, we assigned
all corresponding single cells as “MT,”with patients not carrying mutations assigned the status of wild-type (WT). P values are from a one-tailed Wilcoxon rank
sum test. Barplots compare the relative proportions of cells with varying TFILs between NOTCH1mutant and wild-type patients, and similarly for TP53. P value
derives from a x2 test. In the case of TP53, relative proportions don’t change in a consistent manner, so P value is not shown.
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displayed sufficient read coverage at regulon genes and that according to
our previous SCIRA-based analysis were inactivated in ESCC. Of these
11, a total of 4 (SOX2, RCOR1, ELK3, TEAD1) displayed significantly
lower TFA in ESCC, while the remaining 7 did not display differential
TFA (Supplementary Fig. S11). Thus, for a small fraction of TFs, their
lower TFA in ESCC is associated with hypermethylation of TF-target
promoters. Next, we decided to explore whether the correlation of TFA
with dedifferentiation is independent of underlying NOTCH1 and TP53
mutations, two key mutations in ESCC development. Whilst our CCAT
stemness/dedifferentiation index displayed a very strong and highly
significant association with the TFIL derived from the TFA profiles (as
assessed over the single cells from Cohort 2; Fig. 6E), we only observed a
much milder and no association with NOTCH1 and TP53 mutation
status, respectively (Fig. 6F). Thus, these data support the view that
changes in differentiation activity of the esophageal-specific TFs is
mirrored at the level of the DNA methylome and that these changes
provide a closer proxy to the dedifferentiation/stemness index of cancer
cells compared with NOTCH1 and TP53 mutations.

Reduced differentiation activity of tissue-specific TFs is a
cancer hallmark

Finally, we asked whether the low differentiation activity displayed
by tissue-specificTFs in esophageal cancer is a broadphenomenon that
applies across cancer types. We first explored this in the context of
LUAD, for which a recent 10× scRNA-seq study (“LUAD1”; ref. 54)
had profiled sufficient numbers of normal and tumor epithelial cells,
including alveolar type-1 and type-2 (AT1/2) cells, which are the most
abundant cell types in the distal airway epithelium and which are
thought to give rise to LUAD (73). Using a lung-specific regulatory
network consisting of 38 lung-specific TFs and associated regulons
(Supplementary Data S2; ref. 35), we estimated differentiation activity
of the 38 TFs across all normal and tumor epithelial cells. This
confirmed that the TFs were specific to alveolar cells, and predom-
inantly for the more differentiated AT1 subtype (Supplementary
Fig. S12A). In line with this, our CCAT stemness index predicted a
higher level of potency for AT2 compared with AT1 (Supplementary
Fig. S12B). We also observed that the TFA values for tumor cells were
significantly lower compared with the combined alveolar cells, with an
even more pronounced decrease for metastatic cells collected from
adjacent lymph nodes (Supplementary Fig. S12A). Correspondingly,
the CCAT stemness index was increased in tumor and metastatic cells
compared with normal alveoli (Supplementary Fig. S12B). Comparing
normal alveoli to tumor cells only, we observed a significant skew
toward lower differentiation activity with 26 TFs exhibiting lower TFA
levels in tumor cells (binomial test, P ¼ 0.002; Supplementary
Fig. S12C), a number that could not have arisen by random chance
(Supplementary Fig. S13A). A similar strong skew towards lower
differentiation activity in tumor cells compared with normal alveoli
was observed in an independent 10× scRNA-seq LUAD dataset
(“LUAD2”; binomial test, P ¼ 2�10–9; Supplementary Fig. S12C;
refs. 35, 55). Of note, this pattern of lower differentiation activity was
not observed at the level of differential expression, but is more
consistent with the widespread underexpression as seen in the bulk
tissue LUAD (and LSCC) TCGA studies (Supplementary Fig. S12C;
refs. 74, 75). In addition, PCA on the estimated TFA matrix revealed
better separability of tumor and normal epithelial cells compared with a
corresponding PCA onTF expression levels (Supplementary Fig. S13B).
We observed very similar skews toward lower differentiation activity in
cancer when estimating TFA of 56 colon-specific TFs (Supplementary
Data S3; ref. 35) in two independent 10× scRNA-seq studies of colorectal
adenocarcinoma (seeMaterials andMethods; Supplementary Fig. S12D;

Supplementary Fig. S13C and S13D; ref. 56). Thus, these data establish
that tissue-specific TFs display lower differentiation activity in corre-
sponding single cancer cells, and across different cancer types.

Discussion
Here we have devised a computational method to dissect the

heterogeneity of a preneoplastic epithelial cell population, identifying
a subpopulation of cells with a high TFIL that is independently
associated with high stemness and that is found enriched at the
invasive cancer stage. Underlying this result is the important obser-
vation that the number of tissue-specific TFs displaying reduced
differentiation activity increases during cancer progression, consistent
with the progressive selection of a dedifferentiated stem-like state.
Given that differentiation within the esophageal epithelium proceeds
via a unipotent lineage driven by the stem and progenitor cells located
in the basal layer, our observations are entirely consistent with a
gradual enrichment of a basal stem/progenitor cell with cancer pro-
gression. However, it would appear that the reduced differentiation
activity in preneoplastic and cancer cells is not just driven by an
enrichment of the basal cell-of-origin within cancer lesions, because
the reduced differentiation activity is also seen relative to the normal
basal cells. That is, cancer cells display low differentiation activity of
esophageal-specific TFs even when compared with their presumed cell
of origin, pointing toward an aberrant epithelial reprogramming of the
stem-like state. Supporting this, several of the identified TFs have
tumor suppressor roles in esophageal cancer (e.g., PAX9; ref. 67) or in
other squamous cell carcinomas (e.g., TRIM29; ref. 65). This epithelial
reprogramming may even constitute a cancer hallmark, because we
observed strong associations between TFIL, stemness, and cancer in
other cancer types (colon and lung adenocarcinomas).

Although the role of the tumor stroma in promoting or preventing
invasive cancer is now well established (76, 77), we propose that an
epithelial reprogramming of tissue-specific TFs may drive the early
dedifferentiation process that precedes cancer development. This
reprogramming is characterized by a gradual and irreversible inacti-
vation of tissue-specific TFs, which promotes cells to acquire a more
plastic state. What DNA alterations may drive this reprogramming is
still unclear. While whole genome and exome sequencing of ESCC
and precancerous bulk tissue have identified numerous genomic
aberrations affecting key pathways such as TP53, NOTCH1, and
PI3K-AKT (78, 79), with the exception of NOTCH1, these alterations
do not target dedifferentiation pathways and are seen to accumulate
with age in the normal esophageal epithelium (17, 80, 81), indicating
that other molecular alterations are causally implicated in the
dedifferentiation process (82). In this regard, it is worth stressing
again thatmost tissue-specific TFs do not in general represent hotspots
for somatic mutations or genomic deletions, either in normal
cells (13, 14, 83), preneoplastic lesions (82) or cancer itself (11, 14),
a result we have confirmed here with WGS. Importantly, we have
shown that our TFIL measure provides a much better correlate of the
dedifferentiation state of cancer cells compared with a traditional
marker such as NOTCH1 mutation, supporting the view that the
dedifferentiation process is largely independent of NOTCH1 muta-
tions. Using a novel approach that integrates LCM-WGBS data with
scRNA-seq profiles from the same ESCC samples, we have shown that
the reduced differentiation activity of tissue-specific TFs is instead
frequently associated with promoter hypermethylation. This associ-
ation is also unlikely to be driven by the increased enrichment of the
basal cell-of-origin in cancer lesions, because the low differentiation
activity of tissue-specific TFs in adult stem cells is mainly controlled by
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repressive histonemarks, and not by promoter hypermethylation (84).
In line with this, promoter hypermethylation of tissue-specific TFs
is observed in normal cells exposed to cancer risk factors, including
age (85), and has been proposed to be a cancer hallmark (3, 19).
However, we cannot exclude the possibility that other epigenetic
mechanisms, for instance somatic mutations affecting epigenetic
enzymes, could drive DNAm changes affecting tissue-specific TFs.
It will be important for future work to generate scRNA-seq data
jointly with scATAC-seq (86), histone modifications (87) or DNAm
data (88), in the same cells, as this could establish direct relation-
ships between TFIL and changes to chromatin accessibility.

Overall, we acknowledge that our study and the conclusions drawn
from it are subject to several limitations. First, our in silico predictions
would require experimental validation. To establish experimentally if
the preneoplastic cells we have identified represent those at highest
cancer risk would require advanced in vivo lineage tracing techni-
ques (89) that have not yet been developed. Second, how to epige-
netically perturb a number of tissue-specific TFs in a way that mimics
the epigenetic changes seen in cancer development is also a formidable
challenge, yet necessary to explore the functional consequences for
cellular properties such as stemness and plasticity. Third, the number
of normal basal cells analyzed at single-cell resolution was relatively
low, which only reflects the inherent difficulty of acquiring large
numbers of such cells from patients with ESCC. Although we did
address this by analyzing spatial transcriptomic data encompassing
over a 1,000 basal epithelial spots from three patients with ESCC,
limitations remain in that the purity of these epithelial spots is likely to
be only around 70%. In this regard we note that even if these normal
epithelial spots were to contain 30% stromal cells, thiswould only act to
artificially lower the TFA values for the epithelial-specific TFs, reduc-
ing power to observe differences with the cancer cells, yet here we were
able to observe a reduction in cancer cells, suggesting that this was not a
major limitation. Moreover, it is worth highlighting that our results
were strongly consistent across six independent datasets (2 scRNA-seq
human ESCC cohorts, 1 scRNA-seq mouse study of ESCC develop-
ment, and 3 spatial transcriptomic datasets from three independent
ESCC patients), a clear indication that our results are not explained by
small cell numbers or random chance.

In summary, we have here shown that the number of tissue-specific
TFs displaying low differentiation activity in preneoplastic epithelial

cells identifies dedifferentiated stem-like cells that appear to be selected
for during cancer progression. These novel insights and the compu-
tational CancerStemID framework presented herein, could facilitate
the development of the much-needed early detection and cancer risk
prediction markers for deadly cancers such as ESCC, or alternatively,
to help assess the efficacy of cancer prevention trials (90).
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