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reads per cell4, suggesting that one million 
reads per cell may suffice. In an even more 
ambitious study5, highly multiplexed barcod-
ing was used to process thousands of cells on 
a single sequencing run using ultra-shallow 
sequencing of only 20,000 reads per cell.  
This drastic undersampling of the transcrip-
tome was still adequate to distinguish dif-
ferent cell types in splenic tissue, albeit with  
limited resolution.

Until now, however, the dependence of cell 
type classification on sequencing depth has 
not been understood as there has been no 
systematic analysis of how the transcriptional 
identity of a cell is preserved as sequencing 
depth is decreased. Pollen et al.1 address this 
question by tracking the performance of hier-
archical clustering and principal component 
analysis for phenotypic classification as cDNA 
libraries are sequenced to diminishing depths 
(Fig. 1). Microfluidic automation allows them 
to interrogate a variety of cell types, includ-
ing blood cells, neurons and pluripotent cells, 
in a high-throughput fashion. In addition 
to increased throughput, the microfluidic 
approach provides improved sensitivity and 
reproducibility6,7.

Pollen et al.1 conclude that a majority of the 
primary genes that contribute to transcrip-
tional variance among these diverse groups 
are identified by both high- and low-coverage 
sequencing analysis. The values of the first 
two principal components for individual cells 
are largely preserved down to as low as 10,000 
reads per cell. They also show the capabili-
ties of shallow sequencing in scenarios where 
subgroups differ by subtle transcriptional 
variation. Neural cells at different stages of 
the developing human neural cortex are dis-
tinguished with merely ~50,000 reads per cell, 
and new genetic markers of neural subclasses 
are identified.

This study adds to a growing body of literature 
aimed at assessing the technical performance 
of RNA-seq as a tool for quantitative biology. 

cells and L is the total number of genes identi-
fied among all the cells (Fig. 1b).

Statistical analysis is then used to find 
trends in gene expression across many sin-
gle cells. A common technique is unsuper-
vised hierarchical clustering, which takes the  
N × L gene expression matrix and re-orders 
the row and column indices to minimize the  
difference between expression levels of 
adjacent elements along both dimensions.  
This process yields groups of cells and genes 
with similar expression levels and a dendro-
gram that identifies the distance between cells 
or genes. The result is often presented as a heat 
map of gene expression levels (Fig. 1b) to illus-
trate the subgroups.

Another technique, principal component 
analysis, allows the high-dimensional gene 
expression data set to be projected onto a 
lower-dimensional space in which the varia-
tion between samples is represented with fewer 
variables, called principal components. Groups 
of cells with similar transcriptional profiles can 
be visualized by plotting the first two or three 
principal components of each sample, reveal-
ing clusters in a two- or three-dimensional 
space (Fig. 1c).

Both of these methods have been applied to 
characterize changes in transcriptional profiles 
during development, for example, in human 
preimplantation embryos and embryonic stem 
cells2 and in the mouse lung during alveolar dif-
ferentiation3. These studies analyzed between 
100 and 200 cells.

As the phenotypic heterogeneity of a biologi-
cal sample increases, so does the sample size  
N needed to accurately describe the popula-
tion. Recently, microfluidic4 and robotic5 plat-
forms were applied to process thousands of 
single dendritic cells for whole-transcriptome 
analysis. Large sample sizes impose a practical 
limit on sequencing depth. So what depth is 
sufficient? One study showed that estimated 
expression levels from one million reads per cell 
strongly correlate with those from 10 million  

In recent years, single-cell RNA-seq has 
emerged as a powerful, new approach for 
characterizing the cell types present in a mixed 
population. These studies usually involve a 
trade-off between the number of samples 
analyzed and the number of RNA transcripts 
sequenced per cell, or sequencing depth, that 
can be achieved. In this issue, Pollen et al.1 pres-
ent quantitative guidelines for determining the 
sequencing depth necessary to distinguish the 
cell types in a complex sample. Using a com-
mercial microfluidic platform to capture hun-
dreds of cells from a variety of human tissues 
and performing RNA-seq to different depths, 
they demonstrate accurate and reliable classi-
fication of cell types at a sequencing depth of 
only 50,000 reads per cell (Fig. 1a)—about two 
orders of magnitude fewer than what has been 
typically reported.

Identification of cell types in mixed popu-
lations has long been done using known bio-
markers analyzed by fluorescence-activated cell 
sorting or multiplexed, quantitative PCR. In 
contrast, the complete transcriptional profiles 
generated by single-cell RNA-seq allow cells 
to be identified objectively without a priori 
knowledge of biomarkers. This approach also 
enables the discovery of novel biomarkers.

In a typical single-cell RNA-seq experiment, 
tens to hundreds or even thousands of single 
cells are isolated from a tissue or culture, and 
the transcriptome of each cell is reverse tran-
scribed into cDNA. The cDNA is then ampli-
fied and further processed for next-generation 
sequencing. The output of this pipeline is a list 
of sequence fragments called reads. Mapping 
of the reads to the reference genome produces 
estimates of normalized gene expression levels 
in an N × L matrix, where N is the number of 

How deep is enough in single-cell RNA-seq?
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Guidelines for determining sequencing depth facilitate transcriptome profiling of single cells in  
heterogeneous populations.
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With advances that enable study of larger 
sample sizes and facilitate analysis of big data, 
experimental design becomes more dependent 
on a thorough understanding of the capabili-
ties and limitations of the techniques involved. 
For example, recent work6–9 has character-
ized the sensitivity, accuracy and precision of 
microfluidic single-cell transcriptome analysis.  
Precision, or reproducibility, is a particularly 
important parameter when characterizing het-
erogeneity in large cell populations because it 
can be difficult to distinguish biological varia-
tion from experimental noise. To assess the 
noise in single-cell RNA-seq, researchers have 

measured transcript abundance in identical 
samples prepared by pooling RNA extracted 
from many cells6,8,10. The application of unique 
molecular barcodes for quantification of the 
pre-amplified transcript abundance9,11 might 
enable modeling of noise and suppression of 
noise effects through statistical filtering8,11. 
Such technical investigations are critical to the 
interpretation of biological variation among 
single cells when using RNA-seq.

Another question in validating the sensi-
tivity and accuracy of single-cell RNA-seq is 
whether data pooled from multiple single-
cell experiments accurately represent the  

transcriptome measured by RNA-seq on bulk 
populations. This is a reasonable question 
because significant amplification is required 
to detect the genetic material in a single cell, 
and mRNA capture efficiency is limited. 
Thus, single-cell analysis is an undersampled 
and skewed approximation of the true tran-
script distribution. Despite these obstacles, 
Pollen et al.1 verify previous findings6,7,10 
that single-cell transcriptomes can be merged 
to accurately represent a majority of the 
ensemble transcriptome. In fact, with as few 
as ten low-coverage, single-cell transcrip-
tomes, over 80% of the bulk transcriptome 
can be detected with strongly correlated  
expression levels1,6.

The work of Pollen et al.1 defines the effec-
tiveness of RNA-seq as sequencing depth 
decreases and establishes quantitative guide-
lines for experimental design. It also demon-
strates that microfluidic technology facilitates 
reproducible, high-throughput, single-cell 
analysis. The results offer a roadmap for how to 
consider sequencing depth when performing 
cell type classification in any RNA-seq inves-
tigation with a large sample size. This will be 
particularly valuable in the study of dynamic 
responses of cell populations to stimuli or 
of complex tissues, such as brain12 or tumor 
samples, likely to contain abundant phenotypic 
diversity and previously unidentified transcrip-
tional states.

As researchers take on larger and larger 
sample sizes, a comprehensive understand-
ing of the capabilities and limits of RNA-seq  
technology is essential. Studies that quantita-
tively assess the performance of genomic tools 
are a necessary foundation of ambitious bio-
logical investigation.
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Figure 1  The effect of sequencing depth on cell identification. Pollen et al.1 use hierarchical 
clustering and principal component analysis to explore the relationship between sequencing depth 
and cell type identification. (a) Cells with substantially different gene expression profiles can be 
broadly distinguished with ultra-low sequencing (<10,000 reads). Neural cells at various stages of 
development can be identified with ~50,000 reads per cell. (b) Gene expression heat maps are used 
to visualize groups of neural cells with similar transcription profiles. The authors identify heterogeneity 
in various stages of the developing neural cortex using unsupervised hierarchical clustering to sort 
single cells (rows) and genes (columns). As sequencing depth is increased, cell and gene clusters 
are more easily distinguished. A dendrogram illustrates the distance between cells and genes (right 
panel). (c) Principal component analysis is also used to visualize groups of similar cells. The first  
three principal components (PC1, PC2 and PC3) retain a majority of the variation between cells, 
allowing groups of cells with similar expression profiles to be readily distinguished even with  
minimal sequencing depth.
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