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Abstract: We formulated an analytical model and analyzed the modification
of spontaneous emission in Bragg onion resonators. We consider both the
case of asingle light emitter and a uniformly distributed ensemble of light
emitters within the resonator. We obtain an expression for the average
radiation rate of the light emitters ensemble and discuss the modification of
the average radiation rate as a function of cavity parameters such as the core
radius, the number of Bragg cladding layers, the index contrast of the Bragg
cladding, and the refractive index of surrounding medium. We also consider
the possibility of non-exponential decay of the light emitter ensemble due to
the strong dependence of spontaneous emission on the location and
polarization of individual light emitter. We conclude that Bragg onion
resonators can both enhance and inhibit spontaneous emission by severa
orders of magnitude. This property can have significant impact in the field
of cavity quantum electrodynamics (QED).
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1. Introduction

Optical microcavities, especialy those that combine a large quality (Q) factor and a small
modal volume V, have received much attention in recent years [1-6]. Such optical cavities can
significantly enhance the electromagnetic density of states (DOS) and produce a large vacuum
field fluctuation. As aresult, it is possible to increase the interaction between the light emitter
and the high Q cavity mode, which can be characterized by the Purcell factor Q/V, by several
orders of magnitude. The enhanced interaction between the light emitting material and the high
Q cavity mode can lead to many interesting effects in the field of cavity quantum
electrodynamics, and plays a critical role in important applications such as “thresholdless’
lasers [7-10] and single photon devices[11-13].

The high Q optical confinement in a microcavity is typically achieved through either total
internal reflection or by utilizing a mixture of total internal reflection and Bragg reflection. For
example, in silica microspheres, confinement through total internal reflection can create
whispering-gallery modes with quality factors as high as 10°. However, to satisfy the condition
of total internal reflection, the sizes of such cavities are typically limited to tens of microns or
greater. A large cavity size of such order of magnitude can create two significant drawbacks: it
reduces the coupling strength between the light emitter and the high Q optical mode, and makes
it more difficult to achieve atruly single mode operation (due to the small frequency spacing
between adjacent high Q modes). On the other hand, optical microcavities based on Bragg
reflections can have much smaller sizes of the order of A/n, which is ideal for applications
demanding strong interactions between the light emitter and the vacuum field. An example of
Bragg-confined optical cavities is a semiconductor micropillar [1], where one uses Bragg
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reflection to confine light in one dimension (1D) and total internal reflection to confine light in
the other two dimensions. Another case of Bragg cavity is a defect structure embedded in a
two-dimensional (2D) photonic crystal [5], where one employs 2D photonic band gap (PBG)
effect to achieve Bragg confinement in the two dimensional plane of photonic crystal, and use
total interna reflection to confine photonsin the third dimension.

From the brief discussion above, it is clear that most of the high Q optical microcavities in
the literature involve some degrees of total internal reflection confinement, which creates a
significant drawback: By involving total internal reflection, it is aways possible for the light
emitter within the cavity to interact with the radiation modesthat extend into the free space. The
emission rate into these undesired radiation modes can be lumped together, and represented as
the background radiation rate I'y,. The emission rate into the desired high Q mode can be
labeled as T'moge- FOr efficient single photon source, we need to design a cavity structure to
achieve T'moge >>T'hg.

0. 8kV HE2.B08K

Fig. 1. SEM image of a sliced Bragg onion resonator.

In this paper, we focus on a new class of optical microcavities, namely Bragg onion
resonators, that have been developed by the authors and reported in Ref. [14, 15]. The most
interesting feature of the onion resonators is the unique possibility of approaching true three
dimensional confinement in such microcavities. A scanning electron micrograph (SEM) image
of these optical cavities is shown in Fig. 1. As can be seen from the SEM figure, the onion
resonator is composed of a spherical hollow core bound by concentric layers of alternating
dielectric materials (silicon and SO, in this example). With the large index contrast of silicon
and SO,, the spherical Bragg stack forms an omnidirectional mirror that approaches the
behavior of a perfect metal and reflects nearly all incident light, regardless of the incident angle
and polarization. Under this condition and assuming a completely spherical onion resonator
(without the stem section in Fig. 1, the vacuum fields within and without the onion cavity are
completely separated. If we place alight emitter within the hollow onion core, the light emitter
can only couple to two classes of onion resonator modes: either the core modes that are mostly
confined within the hollow core, or the cladding modesthat concentrate their energy within the
dielectric cladding layers of the onion resonators. Consequently, the coupling between the light
emitter and the core mode are significantly stronger than the light-emitter and cladding mode
coupling. With these considerations, we can conclude that if the frequency of the light emitter
coincides with resonant frequencies of the core modes, we can expect a significant
enhancement of spontaneous emission rate. On the other hand, if the light emitter frequency
does not coincide with any of the core modes, the onion resonator can significantly inhibit the
spontaneous emission process of the light emitting material.

From the discussion above, it is clear that in terms of spontaneous emission engineering,
there is a major distinction between the conventional optical microcavities and Bragg onion
resonators. In conventional cavities, the reliance on total internal reflection invariably leadsto a
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significant background radiation rate I'ny , Which corresponds to the radiation into the free space
traveling mode. On the other hand, with the presence of the omnidirectional cladding layers, the
fully spherically symmetric Bragg onion resonators can almost completely suppress the
coupling into the free space radiation mode. Conseguently, we can achieve both spontaneous
emission enhancement and spontaneous emission inhibition of up to several orders of
magnitude. In other words, we can use onion resonatorsto obtain asignificantly increased T'moge
(the radiation rate into the desired high Q optical mode), and a the same time dramatically
reduce the background radiation rate I'yg. This unique property should make the Bragg onion
resonator a hear ideal candidate for single photon devices.

To analyze spontaneous emission modifications induced by the onion resonator, we begin
with a simplified model that ignores the presence of onion stem section in Fig. 1 and analyze
onion resonators with full spherical symmetry. This assumption allows us to develop an
analytical model for the calculation of spontaneous emission rate and establish a basic
understanding of the spontaneous emission process within the onion core. Furthermore, we
notice that the main effect of the onion stem section isin allowing the interaction of free space
vacuum field and the light emitter through the stem section. Consequently, the presence of the
stem section will lead to an additional increase of background emission rate that can be
estimated as Tree (AQ/4 7 ) , Where Ty IS the free space spontaneous emission rate, and AQ is
the solid angle spanned by the onion stem. From this estimate, it is also clear that we can
significantly reduce this additional background emission rate to avery low level by decreasing
the onion stem diameter to the level of 1 um[14].

In the literature, some studies have been published on the modification of spontaneous
emission in spherical dielectric microspheres and spherical Bragg cavities [16]. However, the
previous studies only consider a Bragg sphere with acontinuously varying cladding and assume
that the radiation sourceis|located at the center of the sphere. In this paper, we adopt atransfer
matrix approach to analyze the discrete cladding layers with a very large index contrast. We
further extend the discussion to an ensembl e average of dipoles uniformly distributed within the
cavity core, which may provide amorerealistic picture of what can be achieved in experiments.
We also focus our analysis on Bragg onion resonators that closely resemble the actually
fabricated structures, which provides us a physical understanding and is highly relevant for the
experimental demonstration of spontaneous emission modification in Bragg onion resonators.

The paper is organized as follows: In section I, we begin with a classical model of a
damped dipole oscillator driven by electromagnetic waves reflected by the microcavity
[16,17]. We combine such a classical picture with the transfer matrix method developed in Ref.
[14], which allows us to calculate the radiation rate of a dipole source arbitrarily located
within the Bragg onion resonator core. In section 111 we present a detailed numerical study of
the modified spontaneous emission process in Bragg onion resonators with various parameters.
We conclude this paper in section V.

2. Spontaneous emission of a single dipolein a Bragg onion resonator

The modified spontaneous emission of a light emitter in an optical microcavity can be
analyzed using a classical model. In this model, which was developed in Ref. [16], the light
emitter is described as an oscillating electric dipole that interacts with its own reflected field
[16,18,19]. The modified spontaneous emission rate is given by the decay rate of a dipole
oscillator governed by the following equation:

p+a)§p=(q2/m)ER(t)—b0p @)

where p is the electric dipole moment of the atomic transition, g is the intrinsic dipole
oscillation frequency in the absence of al damping, and by is the spontaneous emission rate of
a light emitter in the bulk material. The extra term (g7/m)Eg(t) in Eq. (1) accounts for the
modification of spontaneous emission rate within the microcavity. More precisely, Eg(t) isthe
component of the reflected field (due to the microcavity) that is located at the position of the
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dipole source and is paralel to the dipole moment. The two parameters g and m respectively
describe the effective charge and the effective mass of the dipole oscillator. The exact values
of g and m are not significant, since they only appear in the final expression of the modified
spontaneous emission rate in the form of:

m/q? = ngw; /(67€gyc,”) 2

where ny=(¢e/¢,) /2 isthe refractive index of the bulk core material, €, and ¢, are respectively
the permittivity and the speed of light in free space. The relation Eq. (2) is derived using the
classical radiation dipole model. For a more detailed explanation, the reader can consult Ref.
[20].

In order to find the solution of Eq. (1), we assume that both the dipole moment p and the
reflected field component Ex(t) oscillate at the same modified complex frequency:

p=poexpl-(i@ +b/2)] (39)
Ex(t)=Eyexpl- (i@ +b/2)] (3b)

where b corresponds to the modified spontaneous emission rate, » is the modified emission
frequency, po and E, are respectively the amplitudes of the dipole moment and the reflected
field component. By substituting Egs. (2) and (3) into Eq. (1), we find that the normalized
spontaneous emission rate and frequency shift in the presence of the micro-cavity are given

by:
b/b, =1+ Re(E,/Es) (49)

(w—ay)/by =1/2-1m(E, / Eg) (4b)
where we assume that bothband Aw=w- @, are much smaller than w,. The two terms Eg,
and E, in Eq. (4) arerespectively given by:

Eg =ity pok! 67 (53)
Ey=¢" Ilm{ [DTE (F)+ DR (F )] } (5b)

where k=./e/&,m, /c0 is the wave vector, ¢ and uo are respectively the permittivity and

permeability of the bulk material. In the case of Bragg onion resonators, since the light
emitters are confined within the onion core, ¢ and uo also represent the permittivity and

permeability of the core material. In Eq. (5b), @ isthe unit vector along the orientation of
the light emitting dipole, and E, is defined after Eq. (3b). The two terms DF and DX

correspond to, respectively, the transverse electric (TE) and transverse magnetic (TM)
component of the reflected field, which can be obtained using dyadic Green’s function. Dueto

the spherical symmetry of the onion resonator, we can separate DFF and DE into multiple
components using spherical harmonics expansion and characterize each component with a
pair of angular quantum numbers |, and m. The detailed forms of DfF and DY are given

in Appendix A as Eq. (Ada)-(A4b). With some straightforward calculation and application of
appropriate boundary conditions, we find the following expression for Ey:

h(kr) M)
12”%; pTEh( ) o) ™ (ki)

The detailed derivation of Eq. (6) is given in Appendix A. Here it suffices to mention that
ji(kr) and h (kr) are respectively the Ith order spherica Bessel and Hankel function,

whereasg™ and ET  are defined as:

- 2 .
S TE - S =TM
‘e Bym (o a-Bny (1

1 (6
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Em =V j, (kr) X /K (73)
EFE = |, (kLY (0,0) /11 +1) = j, (k) Xy, (7b)

In Eq. (7), Xim=L-Yn(@.9)/10+1 is the spherical vector function. The only

undefined quantities in Eq. (6) are the two parameters p® and p™ , which are defined as

the field amplitude reflection coefficients of the Ith order TE and TM multipole modes a the
interface between the onion core and the innermost cladding layer [16].The amplitude

reflection coefficients p= and p™ can be calculated using the transfer matrix method

described in Ref. [14, 15] and the derivation is summarized as follows.

First, the field in each dielectric layer of the onion resonator can be expressed as a
superposition of different (I,m) multipole orders. Due to the spherical symmetry of the
structure, individual multipole fields with different | and m are independent of each other. For
a given pair of angular quantum number | and m, the TE or TM components within the nth
dielectric layer is:

FH N (ka) Xy W (ko)X Hﬂ ™) (&)

E| | Zn:-ilky VW (KD X Zy-ilky- VX (KaD) X | | By

— 1 v 2 v C

I% — . Znhlq(knrl)xl,m4 . Znhlq(kng)xl,mq . n (TE) (8b)
H| | =i/ky-Vxh k)X =i 7Ky - VXh2(KaF) X | | Dn

where Z,=(1o/£n)"? is the material impedance, and k,=(en/ o) 2wd/Co is the wave vector within
the nth layer. The four linear coefficients A,, B, C,and D,, are constant within the nth layer.

Since the spherical Hankel functions h'(kr,) and h?(kr,,) represent, respectively, the
outgoing and the incoming wave, the amplitude reflection coefficient p, at the core-cladding
interface in Eq. (7) is can be determined from Eq. (8) as[16]

|‘I'M — Bcohlz(krco) & I‘I'E — Dcohl2 (krco)
Aot (Kreo) Cooli (k)

Employing the continuity condition of E, E, H,H, at the interface between two

adjacent layers and the orthogonality of the spherical harmonics, we can relate the linear
coefficientsin the onion core (Aco, Beo, Ceor Deo) 10 those outside the onion resonator (Aout, Bouts

Cout» Dow) through two by two matrices M™ and M & [14]:

9

{Aw} =M™ {g*’“t} (TM mode) & {g""} M, ~E"“‘ } (TE mode) (10)

BCO out co out

Combining Eg. (10) with the boundary condition that there is no incoming wave outside
the onion resonator, i.e.B,, =0 and D,, =0, we can express B,/A, and C,/D,, as a

function of theindividual elements of the two-by-two matrices M™ and M :

B/ Ao = (M ITNI )2,1 / (M ITNI )1,1

11
0/ Co = (T ), /T, &

The subscripts of 1 or 2 in the equation above refer to the row and column indices of the
matrix element. Substituting Eq. (11) into Eq. (9), we find:
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o (M™ ), h? (ko) e (M7 ), .12 (k)
| |

= = (12)
M™ ) H (k) M= )i (ko)

Applying Eg. (6)-(7) and Eqg. (12) to Eq. (48)-(4b), the normalized modified spontaneous
emission rate and the frequency shift take the form of

M e )21 =T™M TE
= =1+ 12;:2 z (IEENECEIm o Em (ro)| (133)
=1 m=-I 1
N (M e )21 ~TM TE 2
oL Sty e om

where the superscript TM,TE implies summation over both TM and TE modes.

In the literature, there is another classical approach that gives the modified spontaneous
emission rate [17,19,21]. In this model, the decaying rate in the presence of the cavity
normalized by the bulk emission rate is identical to the total radiation power of a classica
dipole in the micro-cavity, P.,,, divided by the dipole radiation power in the bulk material,

Rk - Using this approach, we demonstrate in Appendix B that the normalized modified
spontaneous emission rate can also be expressed as

2

_12”222| MTMTE MTMTE)21| ‘&'EW'TE(FO)Z‘ 14

by Pbulk = el

In deriving above eguation | assumed the core and the outer space of the Bragg onion
resonator are filled with the same material. In Appendix B, we prove that this formula is
equivalent to the result given in Eq. (13a). The advantage of Eq. (14) compared to Eq. (13d) is
that the contribution of each individual multipole component to the total spontaneous
emission rate is explicitly given, which can be used to test the convergence of the calculated
spontaneous emission rate.

3. Numerical resultsand analysis

In this section, we use the analytical algorithm described in the previous section to study the
spontaneous emission modification in an onion resonator. We first calculate the spontaneous
emission rate of asingle dipole emitter arbitrarily located within the onion cavity core. Next, we
extend the analysis to an ensemble of dipoles uniformly distributed within the cavity core and
study the dependence of the average spontaneous emission rate on various cavity parameters.
Finally we briefly consider the non-exponential decaying of the dipole ensemble due to their
non-uniformly decaying behavior. In al calculations, we use parameters similar to the samples
that have been successfully fabricated and reported in Ref. [15]. The core is assumed to be air
unless specified otherwise. We mainly consider two types of onion resonators: One with
cladding layers composed of silicon and SO,, the other one with cladding layer composed of
SO, and Si3N,. For the onion resonators considered in this paper, the silicon cladding layers
have arefractive index of 3.5 and athicknessof 0.111 um, whereas the refractive index and the
thickness of the SIO, layers are respectively 1.5 and 0.258 um. For the Si;N,4 layers, the
refractive index is 2.1 and the thickness is 0.185 um. The parameters of the Bragg cladding
pairs are chosen such that the bandgap center islocated at 1.55 um.

3.1 Asingle dipole emitter located at the center of the onion resonator

We first consider the simplest case of spontaneous emission modification in the onion
resonator, in which asingle dipoleis positioned at the center of the onion resonator. In this case,
the dipole can only couple to the TM; mode, since this is the only multipole component that
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provides a non-zero contribution to the summation in Eq. (13) [16]. The numerical results of
the modified spontaneous emission rate and the frequency shift are plotted in Fig. 2(a)-(c). As
expected, if the dipole emission frequency coincides with the frequency of the onion resonator
modes, the spontaneous emission rate can be significantly enhanced, and the enhancement
ratio increases with the addition of more Bragg cladding layers. On the other hand, if the
dipole emission frequency does not coincide with any of the cavity modal frequencies, the
spontaneous emission rate can be reduced by several orders of magnitude. In fact, with just six
Bragg layers, we can achieve spontaneous emission enhancement of approximately 10* times
in the on-resonance case and spontaneous emission inhibition of the order of 10* in the
off-resonance case.

enhancement of spontaneous emission
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Fig. 2. (8). Enhancement of the spontaneous emission. (b). Inhibition of the spontaneous
emission. (c). Spectral dependence of the normalized frequency shift. Here the dipole is
fixed at the center of the Bragg onion  sphere. The dotted, dash-dotted, dashed and solid

lines correspond to arising Bragg layer number of Ngragg= 3, 4, 5and 6.

3.2 Dependence of modified spontaneous emission rate on the dipole position

Here we consider the dependence of the spontaneous emission rate on the position of a single
dipole emitter located within the onion core. Due to the spherical symmetry of the structure,
we can aways assume that the dipole is located on the 7 axis and its corresponding
spherical coordinate is r, =(r, 0, 0). In this case, the spontaneous emission rate depends on

both the displacement from the center of the onion resonator, r, and the orientation of the
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dipole oscillator &. We can further decompose the dipole polarization & into a radial
component and a transverse component and consider only two cases. the radial polarization

casewhere ¢ alignsaong the radia direction; and the case of transverse polarization where
a lieswithin the transverse plane. For these two different polarization cases, we respectively
denote the corresponding spontaneous emission rate as b* (radial) and b” (transverse).

Without a loss of generality, we can also assume that « is aong the x axis in the case of
transverse polarization. Substituting 1, = (r, O, 0) into Eq. (13a) we find:

b N (™), j2
—=1+3) R : A +1)(2 +1)--= (15a)
bo |Z=1: e{(M ITNI )1,1 - (M ITNI )2,1 (kr)2
Vi oo M ™ . 2 M TE
b_:1+§ (2| +1)R TM( I )2,11_M |: d(krll) } + TE( | )Z,lTE j|2 (15b)
by 2 1=1 (MI )1,1 _(MI )2,1 kr - d(kr) (MI )3,1 _(MI )2,1
1
3 (@ A
he] i‘;os 4," -'-_ |
e f Y s
= 0 wstae ot R AL )
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Fig. 3. (8). Radial dependence of the electric field of TE;, TM, and TE,, eigenmodes. TE; and
TE,4 modes only have a transverse electric component while TM, mode has both the radial and
the transverse electric components. (b)—(d). Radial dependence of the normalized radial

damping rate bL/bo(red dashed line) and transverse b”/bo(blue solid line). Results in
(b)«(d) are calculated at the wavelength A =1.556445um, 1.559715um and 1.541255um,

which are the eigen-wavelength of TE;, TM, and TE,, modes respectively. Nragg = 6 is used
here.
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In Fig. 3(b)-(d), we show the normalized spontaneous emission rates for the radial
(b* /by ) and the transverse (b” /b,) polarization as a function of the dipole position. We first

consider three different modes (TE;, TM, and TE,; modes) and calculate the spontaneous
emission rate at the three corresponding modal wavelengths (4 =1.556445um, 1.559715um
and 1.541255um). The radial dependence of the electric field of the TE;, TM, and TE,4 mode
are also plotted In Fig. 3(a). As can be seen from Fig. 3(a)-(d), at the resonant wavelength of
the onion cavity mode, the spatial dependence of the spontaneous emission rate of a single
dipole emitter follows the electric field distribution of the corresponding resonant mode. Such
behavior can be explained by the fact that in the “on-resonance’ case, the spontaneous
emission process is dominated by the radiation into the resonant high Q mode. The other
interesting point is that a the resonance of a TE mode (see Fig. 3(b) and Fig. 3(d), the

spontaneous emission of a dipole oscillating along the radial direction (b*/b,) is strongly

inhibited, whereas that of a dipole oscillating along the tangential direction is significantly
enhanced. Thisis due to the fact that the radial component of the electric field of TE modesis
zero. Consequently the dipole polarized along the radial direction can only couple to the TM
modes, which is off resonance at the given wavelength.

3.3 Radiation from a dipole ensemble within the onion resonator core

In experiments, it can be very challenging to place a single light emitter (such as an organic
molecule or a gas phase atom) at a specific location within the onion resonator core. Instead,
it's easier to fill the entire onion core with an ensemble of light emitters. By exciting the light
emitters and measuring the temporal variation of the radiation power, we can experimentally
extract the ensemble average of the modified spontaneous emission rate. In this case, both the
spatial position and the orientation of the dipoles have a strong dependence on the external
parameters such as the profile and polarization of the excitation field. For a quantitative
estimate, we assume that the light emitting dipoles are uniformly distributed within the entire
onion core with random polarizations (as in Ref [18]). Consequently, the spontaneous
emission rate at a given position r averaged over al possible dipole orientation, i.e.
(b(F)/by),, » isgiven by:

(b(F)/bo),, = jb(r,g)/bodgmﬂ (16)

where the angular integration is over al the possible polarization directions. By substituting
Eqg. (13a) into Eq. (16), we notice that for each multipole order (I, m), the contribution to the

~ 2
average spontaneous emission rate involves the integration of ‘o? EpTE

over the angular

distribution of the dipole source, which can be simplified as:

[[6- €[ s = (e = + ER = 4 (€2 )13 (17)

where & isthe unit vector representing the dipole orientation, and E™™ ™ is the electric field

m

definedin Eq. (78)-(7b). Sincethefirst term on theright hand side of Eq. (17) correspondsto the
radial spontaneous emission rate and both the second and the third term correspond to the
transverse spontaneous emission rate, we can simplify Eq. (16) as:

(b7)by),. = (0" /by +2-0" /10, )13 (18)

with b*/b, and b” /b, given in Eq. (15a) and Eqg. (15b). Next we need to average
b(r)/b,) . over the spatial distribution of the dipole sources to have the ensemble-averaged
0/ dir

spontaneous emission decaying rate (b/hy), , , whichis
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fco

(b/bo),, = | (B(F)/bo),, d%/[%m;} (19)

0

where r, is the radius of the onion resonator core. Substituting Eq. (15a)-(15b) and Eq. (18)
into Eq. (19) and using the integral identity of the Bessel functions[18], we obtain

(™), (M7=),,

2(2 +1) R% (MITM )1,1 - (MITM )2,1 i (M lTE )1,1 - (MITE )2,1 Ql} (20)

where B and Q aretheintegralsof the Bessel functions and take the form of

|

(b/by),, =1+

vol r

Sw

QI :%(krco)s[jlz(krco)_ jl+1(krco)j|—l(krco)] & I:)I =QI—1_I ’krcojlz(krco) (21)

We can aso calculate the average spontaneous emission rate by using the alternative
expression for the spontaneous emission rate (Eqg. (14)). Following the same procedure, we
find that the average spontaneous emission rate can also be expressed as.

2 2
3 < (2 +1)H 1 | | 1 |
b/hby),, = R+ Q| (22
R D T T N TR T

Since according to Eg. (22) the cavity modified spontaneous emission rate has
contributions from all multipole orders, it is necessary to investigate the convergence of the
summation in the equation. We first classify the onion resonator modes with various multipole
order | into two groups': the core modes (which concentrate within the cavity core and are
confined by the Bragg reflection), and the cladding modes (which are mainly confined in the
cladding layers through total internal reflection (TIR)). The core modes typically have smaller

angular quantum number | thet satisfies | <n27z-r, /1, where ng, istherefractiveindex of

the onion resonator core. Examples of core modes are shown in Fig. 3(a). The cladding modes
generally have angular quantum number | greater than n27-r, /4. Examples of cladding

modes are shown in Fig. 4.
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Fig. 4. Theradial dependence of the magnetic field of the cladding modes. The fields of both
modes are evanescent in the core. The field of TM3, mode decays quickly in the cladding due to
the Bragg reflection. While the field of TM4, mode is propagating in the cladding layer and is

confined by TIR at the outer surface. Herewe use I'cg = 74M and Naragg=7.

In Fig. 5, we use three different onion structures to illustrate the relative strength of
spontaneous emission into different mutlipole order 1. We use Eq. (22) and choose the
wavelength at 1.543 um, which is an off-resonance case for all three different onion cavities.
The parameters of the onion resonators are given in the figure and the figure caption. As can
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be seen from the figure, most of the contributions to the ensemble-averaged total spontaneous
emission rate come from the core modes (I <30 for r,, =7um) and some cladding modes
(45>1>30for r,, =7um)). The contributions from the cladding modes with very large angular

guantum number | decrease very fast, which ensures the convergence of the summation in Eqg.
(20) and (22).

N

-
o
Q

o
® x &
o) x 0o
e 4 0 00, % x 1O
& 10 E x x 2 To0
3 “ rthiar S 7o
8 0 x x [e] «

o o
k) ~ O X x o

o O

S 10° %00 X0 08 o® ©
. L i
— = =
o NBragg 5f o= 7um o o
= e NBragg_7’rco_7”m o
S 8 « Ngragg™ M, =4-65um % (o}
£ 10" ragg co &,
g 0 4 50

0 20 30
angular modal number L

Fig. 5. The partial averaged spontaneous emission rate as a function of the modal number L (i.e.
thelth termin Eq. (22)).

Fig. 5 also has several other interesting features. First we notice that the core modes with
| less than 10 does not contribute significantly to the cavity modified spontaneous emission
rate, which is due to the fact that the light emitter frequency does not coincide with any of the
core modes. It is aso clear that among the cladding modes, those with a relatively smaller
angular quantum number | have a much stronger coupling to the light emitter within the onion
core. This can be explained by the observation that the cladding modes with smaller |
penetrate deeper into the onion core, as shown in Fig. 4.
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Fig. 6. (a) Spectrum of the onion resonator el genmodes with modal number | <24. (b).
Spectral dependence of the ensemble averaged damping rate. ry, =74m and Ngragg = 4 are
used in the cal culation.

In Fig. 6(b) we plot the spectral dependence of the average spontaneous emission rate for
an onion resonator with four pairs of cladding layers. The frequencies of the onion resonator
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modes are calculated using the transfer matrix method [14] and shown in Fig. 6(a). It is
evident that the peak positions in spontaneous emission rate spectrum (Fig. 6(b)) match the
wavelengths of the onion resonator modes shown in Fig. 6(a). Furthermore, we notice that
with only four pairs of cladding layers, we can aready achieve an average inhibition of the
order of 0.05~0.1 in the off resonance and an enhancement of the order of 10 if the light
emitter frequency coincides with that of the onion resonator modes.

For the on-resonance cases, if we ignore the linewidth of the light emitting material (as
in our calculations), the enhancement of the spontaneous emission rate at the resonant
frequency of adominant cavity mode can be estimated as[15, 22]

B= <b/b0>vo| = Qcav/13 /(4”2Vcealf\f/ ) (23)

where A is the optical wavelength, V& is the effective modal volume and Q_, is the
quality factor of the cavity mode. Since the quality factor of the core modes increases
exponentialy as a function of the cladding layer number [14], we expect that the resonance
enhancement of spontaneous emission rate also increases exponentially with N, . As an

example, we calculate the peak enhancement ratio <b/b0>vol a the resonant wavelength of

the TE;, TM, and TE,4 modes as a function of the cladding pair number Ngagq. The results,
which are givenin Fig. 7, clearly demonstrate an excellent exponential dependence.

0 vol
-+
4
L

peak value of <b/b_>
=)

5 6 7 8 9
cladding layer number
Fig. 7. Enhancement of the ensemble averaged spontaneous emission decaying rate as a

function of the cladding layer number. The“plus’, “star” and “circle’ are values of the peaksin
Fig. 6 corresponding to TE;, TM, and TEy, resonance modes respectively.

3.4 Spontaneous emission inhibition in Bragg onion resonators

A unique feature of the onion resonators is the possibility of significant spontaneous emission
inhibition, which is important for many quantum optics applications [6,7,23-25]. If the onion
resonator has cladding layers with a very large index contrast and a sufficiently large core
radius, the onion cladding layer can be regarded as an omnidirectiona reflector, which
behaves as perfect metal and can effectively isolate the vacuum field within the onion
resonator from the free space vacuum field. In this case, the light emitter within the onion core
can no longer couple to the free space vacuum field, which lead to significant spontaneous
emission inhibition in the onion cavity, as we have observed in previous analytical results.
However, for onion resonators with a small number of cladding pairs, or those with relatively
low-index contrast cladding layers, or smaller core radius, the af orementioned simple analysis
may no longer apply. In this section, we analyze the spontaneous emission inhibition of dipole
ensembles in onion resonators with different parameters such as cladding pair number Ng;agg,
cladding index contrast, core radius, and the refractive index of the core material. We focus
primarily on cases where we may no longer approximate the onion cladding layers as an
omnidirectional mirror any more. We demonstrate that even for such “non-ideal” onion
resonators, we can still achieve spontaneous emission suppression for at least two orders of
magnitude.
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Fig. 9. (8) The partial averaged damping rate as a function of the modal number | (the Ith term
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thegreen“circle’ isfor ny/n, =3.5/1.5 and Ngragy= 6.

We first study the dependence of the spontaneous emission inhibition on the cladding
pair number Ngagq, @ssuming the core radius to be 7 pm. It is instructive to first consider the
results in Fig. 5. Comparing the two cases (one with Ngragg = 5 and the other with Ngagg= 7),
we find that the additional cladding layers significantly reduce the spontaneous emission rate
into multipole components with small angular quantum number (1<30). The spontaneous

emission rate into larger multipole components (38<| <44), however, remains approximately
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the same even as Ngoyq increases. This is to be expected since the larger multipole
components account for contributions from the cladding modes. In Fig. 8, we show the spectra
of total average spontaneous emission rate in onion resonators with two different core radii.
The results clearly show that we can achieve spontaneous emission inhibition up to two orders
of magnitude with seven pairs of cladding layers, and the radius of the onion core does not
have a significant impact on the degrees of spontaneous emission inhibition.

The cladding layers of onion resonators can be constructed from other dielectric
materials besides S and SIO2. Using a fabrication technique similar to those discussed in Ref.
[14], we can realize onion resonators with SIO2 and Si3N4 as cladding layer materials. Since
both SIO2 and Si3N4 are transparent for visible light, the onion resonators with SO2/Si3N4
cladding layers are ideal for applications in the visible range. However, due to a smaller index
contrast, the SIO2/Si3N4 cladding layers no longer form omnidirectional reflectors. Therefore,
it is of interests to investigate the inhibition of spontaneous emission in onion resonators with
Si02/Si3N4 cladding. The parameters of the SIO2/Si3N4 layers in our calculations are given
at the beginning of section 3.

For comparison among various onion resonators with different cladding materials, we
choose to compare those with similar quality factors, since the cavity quality factor is the one
parameter that can effectively describe the separation between the high Q cavity mode and the
free space radiation mode, which is of the utmost importance in our analysis. With this
requirement in mind, we will compare SiO,/SizN, onion resonators with 15 cladding pairs
with SiO,/Si onion resonators of 6 cladding pairs. The quality factors of the TE; mode in these
two onion resonators are respectively 1.9613x10° and 1.8759x10°. In Fig. 9(a), we show the
averaged spontaneous emission rate into various multipole order | in SO,/SizN, and SiO,/Si
onion resonators. We notice that for the SiO,/Si;N, and the SO,/Si onion resonators, the
spontaneous emission rate into a given multipole order | are very similar in magnitude if the
multipole order | is relatively small. On the other hand, for larger multipole orders, the partial
spontaneous emission rate of the SO,/SizN, onion resonator is generally larger than that of
the SO,/S onion resonators. Such behavior can be attributed to the fact that the SO,/Si
cladding layers can provide optical confinement equally well for both larger and smdler
multipole orders (due to their large index contrast), whereas the SiO,/SisN, cladding layers are
less effective in providing confinement for radiation fields with larger multipole orders. InFig.
9(b) and Fig. 9(c), we show the total average spontaneous emission rate in a SiO,/SisN,4 onion
resonator and a corresponding SO,/Si onion resonator. The results demonstrate that for two
Bragg onion resonators with similar quality factors, the one with SIO,/Si cladding layers can
achieve better spontaneous emission inhibition as compared to the resonator with SO,/SizN,
cladding layers. However, it should be noted that the degree of spontaneous emission
inhibition in a SIO,/SizN4 onion resonator is only marginally less than that of a comparable
SiO,/Si onion resonator, which is approximately afactor of two.

In order to experimentally investigate spontaneous emission modification in a Bragg
onion resonator, one particular attractive approach isto immerse the entire onion structureinto
water based solution doped with light emitting materials. In Fig. 10, we compare the
spontaneous emission inhibition in an air-core onion resonator with an onion resonator filled
with water-based solution. With a larger refractive index (ng, = 1.33), the wave vector in a
water-filled onion resonator is smaller compared to that in an air core onion resonator, which
means an onion resonator with a water-filled core can support higher order multipole modes.
Therefore, the light emitter within the solution filled onion cavity can couple to more mutlipole
components, which is clearly shown in Fig. 10(a). As aresult, we expect that the inhibition of
spontaneous emission should be less pronounced in the water core onion resonator as compared
to the air core onion resonator. In Fig. 10(b) and (10c), we show the total average spontaneous
emission rate in a water core onion resonator and the corresponding air core resonator. As
expected, the off resonance spontaneous emission ratein awater core onion resonator is similar
or dlightly larger than that in an air core resonator. However, our calculations also demonstrate
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that it is possible to achieve atwo orders of magnitude reduction in the spontaneous emission
rate in a solution-filled onion resonator.
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Fig. 10. (a) The partial averaged damping rate as a function of the modal number | (the Ith term
inEqg. (22)). (b) and (c). The averaged damping rate for the Bragg onion resonator i mmersed
in different media. We assume the core area and surrounding area are filled with the light

emitting media whoseindex is ng . We use coreradius of 7umin (a) and (b), and 4.65um

in (c). The data is calculated at 4 =1.548um in (a)-(c). In al figures, we use Ngragg = 7,
ng =1 for the“asterisk” and nq =1.33 for the“circle’.

3.5 Non-exponential averaged decaying

In the above analysis of onion resonators, we assume that the average spontaneous emission
rate provides an adequate description of the spontaneous emission process in the microcavity.
However, due to the sharp variation of spontaneous emission rate as a function of both the
position and polarization of the light emitter, we expect that the spontaneous emission from
the dipole ensemble within the onion core can be non-exponential, and an average
spontaneous emission rate does not contain the complete information on the cavity modified
spontaneous emission process. In this section, we provide a few examples that illustrate a
more complicated picture for the spontaneous emission in the onion resonator.

In order to simplify our analysis, we assume that al of the light emitters within the onion
core are excited at the time t = 0. Subsequently at a later time t, the total number of light
emitters at the excited stateis

N(t) = ”exp(— b(F,Q)-t)- n(F, Q)d% - dQ/ 4z (24)

where n(r,Q) describes the initial distribution of the light emitters at the excited state as a

function of the dipole position r and polarization Q=(0,9) . To further simplify
calculations, we assume the initial distribution function n(f,Q) to be a constant number n,
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and consider the local spontaneous emission rate to be independent of the dipole polarization.
In reality, the spontaneous emission rate of an individual dipole source may have a strong
dependence on the dipole polarization (as shown in Fig. 3). However, the assumption of a
polarization independent local spontaneous emission rate greatly simplifies the integration in
Eq. (24), and also alows a qualitatively analysis of the non-exponential spontaneous decay in
the onion resonator. With these considerations, Eq. 24 is simplified as:

N(t) = nOU exp(- (bl )/by) . -t)d°F (25)

where (b(r)/b,) 4 1S the local spontaneous emission rate averaged over all the possible

dipole orientation and is given by Eq. (18). The optical radiation power due to the dipole
ensemble in the onion core can be obtained from Eg. (25):

P(t) = hv- dN(t)/ dt = hvnO”exp(—<b(F)/bo>dir A)b(F)/bp) A3 (26)

where hv isthe energy of a single photon. From Eq. (26), we can define a time dependent
average damping rate as

bt) =1/ P(t)- (dP(t)/ dt) (27)
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Fig. 11. Normalized radiation power (the left column) and the derived averaged decaying rate
b(t) (the right column) as a function of time. The red solid line stands for the exponential
decaying, the blue dashed line stands for the non-exponential decaying. The exponential
decaying rate is calculated with Eq. (22). We use parameters rq, = 7 um, Npragg = 4 in the

calculation and choose two wavelengths: 1.55972um (eigenwavelength of TM2 mode) and
1.548um (off resonance).

For an onion resonator with a core radius of 7 um and four pairs of SO,/S cladding
pairs, we analyze the time dependent spontaneous emission at A = 1.55972um, which
correspond to the resonant wavelength of the TM, mode, and A=1.548um, which is off cavity
resonance. In Fig. 11, we plot the tempora variation of the spontaneous radiation power and
the time dependent spontaneous emission rate. From Fig. 11, we notice that initially, the total
radiation power calculated from Eq. (26) decays faster than the results obtained assuming
exponential decay. On the other hand, at later time the rate of non-exponential decay becomes
smaller than the average spontaneous emission rate obtained assuming exponential decay.
Since the spontaneous emission from the light emitter ensemble contains both fast-decaying
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and slow-decaying dipoles, it is reasonable to expect that the total radiation from the dipole
ensemble begins with contributions from fast-decaying light emitters followed by
slow-decaying light emitters, as shown in Fig. 11. From the results shown in Fig. 11, we can
also conclude that the average spontaneous emission rate as defined in Eq. (22) provides a
reasonably good description of the decay of the dipole ensemble within the onion resonator,
even though the time dependent spontaneous emission rate changes after the initial excitation.

4, Discussion

In above analysis, we assume the structure is a perfect onion sphere and haven’'t addressed the
influence on the spontaneous emission of the open stem in the real sample shown in Fig. 1.
We estimated in Ref [14] that the presence of the stem has very little impact on the quality
factor of the core modes, thus it won't have significant influence on the resonance
enhancement ratio. In practice, the observation of Purcell effect in a high Q cavity is limited
by the large spectral width of commonly used emitters (~20nm at 300K for rare-earth atoms
[12]). To date, quantum dots are used extensively to study the Purcell effect in
semiconductors because of their narrow spectral lineshape [12,25]. In the case of radiation
suppression, we pointed out in Ref [ 14] the contribution of the “stem” leakage to the radiation
rate can be roughly estimated from the fraction of the solid angle spanned by the “stem”, or

Byem /0o = (rqem/ 27, )* - The practical value for the stem radius and the core radius are 1um and
7um, thus we obtain by, /b, ~ 0.5%. In our analysis ( e.g., Fig. 9), asuppressed of ~1% can

be achieved with Ngagg = 7. Thus we expect that the suppression ratio can be limited by the
presence of the stem only for very large Ngragg> 8.

5. Conclusion

In this paper, we utilize two different approaches to calculate the spontaneous emission of a
dipole inside the core of a Bragg Onion spherical resonator. Using the parameters of the
realized structure, we calculate the detuning of the modified spontaneous emission of a dipole
located at the center and the profile of the damping rate as a function of the dipole position. To
account for the real case, we further calculate the average damping rate for an ensemble of
excited emitters inside the core. Dependence of the ensemble-averaged damping rate on
different parameters is also discussed. An enhancement ratio of 102 ~10° upon resonance and
a suppression ratio of ~107 off resonance can be achieved with 7 Bragg cladding layers.
Finally, the assumption that the averaged radiation decays exponentialy is examined. The
analysis presented in this paper should provide a quantitative foundation for future
experimental investigation of onion resoantors.

Appendix
A. Derivation of thereflected dectric field

To calculate the field reflected by the cladding layers, we start with the result given in Ref [16]
and summarize it as follows. For an oscillating dipole located a position ¥, in the Bragg

onion core and polarized along direction @ , the source field is governed by the vector wave
equation (assuming exp(-iampt) harmonic time dependence)

VxVxD,(F)-of tyeD, (F) = iy, (F) (A1)
Where @, is the angular frequency, u, and ¢ are the constant permeability and
permittivity of the core material, J =—ia,p,d(F—r,)a is the current density, and p, is the
amplitude of the dipole moment. Employing the dyadic Green's function method [26], the

transverse magnetic (TM) component and transverse electric (TE) component of the source
field satisfy
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B, =3,/ @ F-VoxVoxiyglf.y), T %, (A23)
[F-B FPE todo@ -V o xTag(F, Ty ), r#7, (A2b)
expli

where J,=-im,p, is the current amplitude, g(r,ry)= k|r—r0|)/4ﬂ|r—r0| is the

“ n

three-dimensional scalar Green’s function. The subscript in the gradient operator V,
means the operator is acting on the source variable 7,. g(r, ro) can be expanded in terms of
spherical waves such that

9(F.ro)= 'kZZh (kr.) Yien (6, 0),ea (60, 05) (A3)

=0 m=—

where j(kr.) and h'(kr,)are respectively the spherical Bessel function and the spherical
Hankel function of the first kind, Y,,(6,¢) isthe spherical harmonics function, r_(r.) isthe
greater (lesser) of rand r,. The reflected field is coming from the source field reflected by

the cladding and should have similar forms to the source field. We can thus express the
reflected fields according to Eq. (A2a)-(A3) as

o |
BR (1) =-19| OB (013 s &A™ ) 010 (A%)
DR- ()= 2,057 ( O)ZZI(H) (An)™ i1 (k)Y (0, 2) (Adb)

where (A,)™™ are constant amplitudes decided by boundary condition, L=rxV/i isthe

angular momentum operator, O (,) and OZF(f,) are operators acting on the source
variable, which can be expressed as

OM (7)) =—kdy/ @y - G-V g x Vo xT, (A5a)
O () = ittgkddi -V o X T, (A5b)

In Eq. (A4a)-(A4b) we only employ the spherical Bessel function of the first kind, j, (kr),

because the reflected field must be nonsingular at the center r =0. Thetotal field in the core
is the sum of the source field and the reflected field and must satisfy the boundary conditions:
at the core-cladding interface, the sum of the inward-traveling radial waves is equal to the sum
of the product of the outward-traveling radial waves and the field amplitude reflection
coefficient. Employing the boundary condition we obtain the constant amplitudes

(A, E™ = o™ hll(krco)ugg\(z)Yl;a(am%) (AB)
hlz(krco)_pl ' I'\1(krco)
where p, isthefield amplitude reflection coefficient of the | th order multipole mode at the

core-cladding interface, r, is the radius of the core. Substituting Eg. (A6) into Eq.

(Ada)-(A4db), and applying the result to Eq. (5b), the reflected electric field component along
the dipole moment orientation at the source position normalized by parameter Eg (Eq. (58)) is

o |
Er 127 plTE hll(krco) . = )‘2 n ,0|TM hll(kroo) - EMM (1y) 2:| (A7)
Ee 2 TE, 1 0 2 ™ 1 m 1’0
S T L (ke )= oy (ko ) h(kreo )= o1 it (kreo )
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wherethe vectors EM and E[F are defined as
EM =V j (k) Xm/k (A8a)
Em = i (KLY (6.9) = J ()X /1T +D) (A8D)
where X, =L-Y,,(6,¢)/{10+1) isthe spherical vector function [27]. In the summation in
Eq. (A7), thetermwith 1 =0 isdropped because X, (6,¢)=0.

B. Direct evaluation of the modified decaying rate by calculating the radiation power

In this section, we derive the modified spontaneous emission rate (Eg. (13a)) using another
classical approach [17,19,21,26]. In this model, the decaying rate in the presence of the cavity
normalized by the bulk emission rate is identical to the total radiation power of a classical
dipole in the micro-cavity, P.,,, divided by the dipole radiation power in the bulk material,

R,k - For an oscillating dipole located &t rp, the radiative electric field at r >r, in the core
can be expanded in terms of the multipole modes [28]

Egp = Zoo D [/¥eo 8 (LMY x (ki) Xy + 80 (1,1 (ko) Ko (81)
I.m

where ac(l,m=—i-k2 /JI1+D- I { — 1) (koF )]+ ko (F - 3) J, (Keo r)}dr (B2a)
ay (I,m) =—i-k2 /{11 +1) - jvlmv (F x 3)jy (Koot M (B2b)

Zeo =Myl £, 1S the material impedance and k, = /&, /e,@,/C, 1S the wave vector.
Here ¢, is the constant permittivity of the core materia. The source current is

J=—iam,pyd(F —F,)a and the charge density is p =—p,V(F -7, )& , then Eq. (B2a) and (B2b)
can be simplified to

ag (,m) =keodo /1T +D) & 9 xV x|y (keot Mim(@.0)] o, (B3
ay (,m) = 1 k&30/ 0 +D) -6 Vx[fi (kea Min(.0)] r—y (B)

where J, =-iw,p, is again the dipole current amplitude. The total field inside the cavity

core is composed of the direct radiation field of the dipole (Eq. (B1)) plus the field reflected
from the boundary, i.e.

Ecore = Edip + Eref (B4)
The reflected field is source-free and can be expanded as

B = Zoo D [1/Keo D 0,V iy (keol) Ko + b1y (1) (o) Xy (85)

I,m

The total radiation field outside the Bragg sphereis
Eras = Za D /Kan - Ce .MV X (ko) Xi + Gyt (N (D) X (BO)
I,m

where Z,, =+ tto! €ont » Ko =€/ €0/ ¢ aNd g, is the constant permittivity of the

material outside the Bragg sphere. Since the fields inside the core and that outside the sphere
are related to each other by the boundary condition, we can use the transfer matrix method
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described in section |1 again. With Eq. (B4)-Eq. (B6), the coefficients in the transfer matrix Eg.
(10) are found to be

Ay =ag(l)+be(1)/2, By, =be(1)/2, Ay =ce(l), By =0

Cto =ay (1)+by (1)/2, D, =by (1)/2, Cy =cy (1), Dy =0
and Eq. (10) leadsto

Ce :aE/[(M ™ )1,1 _(M i )2,1J & by =ay /l(M " )1,1 _(M " )2,1] (B8)

The total radiation power is an incoherent sum of the contributions from all the multipole
modes [28]

(B7)

l:)cav = Zout/(Zkgut)' ZhCE (I,m)|2 +|CM (l ’ m)|2J (Bg)
I,m

and the radiation power of an oscillating dipole in the bulk core materia is
Rk = /oo / €0 - @ 101272463 | | . Substituting Eq. (B3a)-(B3b) and Eq. (B8) into Eq. (B9),
the normalized decaying rateis

b P (&0 ) 1 1 i 2

— o | T | o7y = a-EMTE (KT, (B10)

bo Pbulk [gout] §2|(MI-I—M’TE)L1_(M-ZF,’\1A YTE)2,1| | l 01

where the vectors E™ ™ are defined in Eq. (A8a)-(A8b) and the superscript TM,TE means

summation over both TM and TE modes.
In the following we are going to prove Eq. (B10) is equivalent to Eq. (13a). For a pure
multipole mode of order (I,m) described by Eq. (8a)-(8b), by integrating the poynting vector
over al solid angle, we obtain the radiation power in the nth layer [28]
2
Bn Cn

Dn

2) (TM mode) & P=Zn/2kn2-[

P=z, /2 (A - ‘) (TEmodg  (BLY

When there is no gain or loss inside the cladding media, the energy flux on the inner and
outer sides of the cladding layer should be equal to each other due to the energy conservation
law. If the materials in the core and outside the Bragg onion sphere are the same we derive

-l (e )

Combine above results with Eq. (10) and use the boundary condition that there is no
incident wave from outside, i.e.B,, =0 and D,, =0, we can prove

2 2

Bout Cco - Dco Cout - Dout

zj (B12)

(R (VI (B133)
(MI )2,1 _| 1 |2
t ZR{ (MI )1,1 _(MI )2,1} - |(MI )1,1 _(MI )2,1| (Blsb)

for both TE and TM modes. In addition, we notice that without the presence of the cavity, Eq.
(B1) and Eq (B6) describe the sameradiationfield, i.e. ¢ =a and c, =a,, , then Eq (B10)
leadsto

122y @ EMTE (ki | /2=1 (B14)
Im
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Finally, by substituting Eq. (B13b) and Eqg. (B14) into Eq. (B10) we immediately find

b P (M, )5y ™ 2
B _ v _1,12:V'R 21 o - EMTE (ko (B15)
By R % (M, )Plll TE (M, )?f i | " ® )|
which isthe same as Eq. (133).
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