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Abstract: We formulated an analytical model and analyzed the modification 
of spontaneous emission in Bragg onion resonators. We consider both the 
case of a single light emitter and a uniformly distributed ensemble of light 
emitters within the resonator. We obtain an expression for the average 
radiation rate of the light emitters ensemble and discuss the modification of 
the average radiation rate as a function of cavity parameters such as the core 
radius, the number of Bragg cladding layers, the index contrast of the Bragg 
cladding, and the refractive index of surrounding medium. We also consider 
the possibility of non-exponential decay of the light emitter ensemble due to 
the strong dependence of spontaneous emission on the location and 
polarization of individual light emitter. We conclude that Bragg onion 
resonators can both enhance and inhibit spontaneous emission by several 
orders of magnitude. This property can have significant impact in the field 
of cavity quantum electrodynamics (QED).  
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1. Introduction 

Optical microcavities, especially those that combine a large quality (Q) factor and a small 
modal volume V, have received much attention in recent years [1-6]. Such optical cavities can 
significantly enhance the electromagnetic density of states (DOS) and produce a large vacuum 
field fluctuation. As a result, it is possible to increase the interaction between the light emitter 
and the high Q cavity mode, which can be characterized by the Purcell factor Q/V, by several 
orders of magnitude. The enhanced interaction between the light emitting material and the high 
Q cavity mode can lead to many interesting effects in the field of cavity quantum 
electrodynamics, and plays a critical role in important applications such as “thresholdless” 
lasers [7-10] and single photon devices [11-13].  

The high Q optical confinement in a microcavity is typically achieved through either total 
internal reflection or by utilizing a mixture of total internal reflection and Bragg reflection. For 
example, in silica microspheres, confinement through total internal reflection can create 
whispering-gallery modes with quality factors as high as 109. However, to satisfy the condition 
of total internal reflection, the sizes of such cavities are typically limited to tens of microns or 
greater. A large cavity size of such order of magnitude can create two significant drawbacks: it 
reduces the coupling strength between the light emitter and the high Q optical mode, and makes 
it more difficult to achieve a truly single mode operation (due to the small frequency spacing 
between adjacent high Q modes). On the other hand, optical microcavities based on Bragg 
reflections can have much smaller sizes of the order of λ/n, which is ideal for applications 
demanding strong interactions between the light emitter and the vacuum field. An example of 
Bragg-confined optical cavities is a semiconductor micropillar [1], where one uses Bragg 
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reflection to confine light in one dimension (1D) and total internal reflection to confine light in 
the other two dimensions. Another case of Bragg cavity is a defect structure embedded in a 
two-dimensional (2D) photonic crystal [5], where one employs 2D photonic band gap (PBG) 
effect to achieve Bragg confinement in the two dimensional plane of photonic crystal, and use 
total internal reflection to confine photons in the third dimension.  

From the brief discussion above, it is clear that most of the high Q optical microcavities in 
the literature involve some degrees of total internal reflection confinement, which creates a 
significant drawback: By involving total internal reflection, it is always possible for the light 
emitter within the cavity to interact with the radiation modes that extend into the free space. The 
emission rate into these undesired radiation modes can be lumped together, and represented as 
the background radiation rate Γbg. The emission rate into the desired high Q mode can be 
labeled as Γmode. For efficient single photon source, we need to design a cavity structure to 
achieve Γmode >>Γbg. 

 

 
 Fig. 1. SEM image of a sliced Bragg onion resonator.  

 

In this paper, we focus on a new class of optical microcavities, namely Bragg onion 
resonators, that have been developed by the authors and reported in Ref. [14, 15]. The most 
interesting feature of the onion resonators is the unique possibility of approaching true three 
dimensional confinement in such microcavities. A scanning electron micrograph (SEM) image 
of these optical cavities is shown in Fig. 1. As can be seen from the SEM figure, the onion 
resonator is composed of a spherical hollow core bound by concentric layers of alternating 
dielectric materials (silicon and SiO2 in this example). With the large index contrast of silicon 
and SiO2, the spherical Bragg stack forms an omnidirectional mirror that approaches the 
behavior of a perfect metal and reflects nearly all incident light, regardless of the incident angle 
and polarization. Under this condition and assuming a completely spherical onion resonator 
(without the stem section in Fig. 1, the vacuum fields within and without the onion cavity are 
completely separated. If we place a light emitter within the hollow onion core, the light emitter 
can only couple to two classes of onion resonator modes: either the core modes that are mostly 
confined within the hollow core, or the cladding modes that concentrate their energy within the 
dielectric cladding layers of the onion resonators. Consequently, the coupling between the light 
emitter and the core mode are significantly stronger than the light-emitter and cladding mode 
coupling. With these considerations, we can conclude that if the frequency of the light emitter 
coincides with resonant frequencies of the core modes, we can expect a significant 
enhancement of spontaneous emission rate. On the other hand, if the light emitter frequency 
does not coincide with any of the core modes, the onion resonator can significantly inhibit the 
spontaneous emission process of the light emitting material.         

From the discussion above, it is clear that in terms of spontaneous emission engineering, 
there is a major distinction between the conventional optical microcavities and Bragg onion 
resonators. In conventional cavities, the reliance on total internal reflection invariably leads to a 
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significant background radiation rate Γbg , which corresponds to the radiation into the free space 
traveling mode. On the other hand, with the presence of the omnidirectional cladding layers, the 
fully spherically symmetric Bragg onion resonators can almost completely suppress the 
coupling into the free space radiation mode. Consequently, we can achieve both spontaneous 
emission enhancement and spontaneous emission inhibition of up to several orders of 
magnitude. In other words, we can use onion resonators to obtain a significantly increased Γmode 

(the radiation rate into the desired high Q optical mode), and at the same time dramatically 
reduce the background radiation rate Γbg. This unique property should make the Bragg onion 
resonator a near ideal candidate for single photon devices. 

To analyze spontaneous emission modifications induced by the onion resonator, we begin 
with a simplified model that ignores the presence of onion stem section in Fig. 1 and analyze 
onion resonators with full spherical symmetry. This assumption allows us to develop an 
analytical model for the calculation of spontaneous emission rate and establish a basic 
understanding of the spontaneous emission process within the onion core. Furthermore, we 
notice that the main effect of the onion stem section is in allowing the interaction of free space 
vacuum field and the light emitter through the stem section. Consequently, the presence of the 
stem section will lead to an additional increase of background emission rate that can be 
estimated as Γfree (ΔΩ/4π ), where Γfree is the free space spontaneous emission rate, and ΔΩ is 
the solid angle spanned by the onion stem. From this estimate, it is also clear that we can 
significantly reduce this additional background emission rate to a very low level by decreasing 
the onion stem diameter to the level of 1 μm [14].  

 In the literature, some studies have been published on the modification of spontaneous 
emission in spherical dielectric microspheres and spherical Bragg cavities [16]. However, the 
previous studies only consider a Bragg sphere with a continuously varying cladding and assume 
that the radiation source is located at the center of the sphere. In this paper, we adopt a transfer 
matrix approach to analyze the discrete cladding layers with a very large index contrast. We 
further extend the discussion to an ensemble average of dipoles uniformly distributed within the 
cavity core, which may provide a more realistic picture of what can be achieved in experiments. 
We also focus our analysis on Bragg onion resonators that closely resemble the actually 
fabricated structures, which provides us a physical understanding and is highly relevant for the 
experimental demonstration of spontaneous emission modification in Bragg onion resonators. 

The paper is organized as follows: In section II, we begin with a classical model of a 
damped dipole oscillator driven by electromagnetic waves reflected by the microcavity 
[16,17]. We combine such a classical picture with the transfer matrix method developed in Ref. 
[14], which allows us to calculate the radiation rate of a dipole source arbitrarily located 
within the Bragg onion resonator core. In section III we present a detailed numerical study of 
the modified spontaneous emission process in Bragg onion resonators with various parameters. 
We conclude this paper in section IV. 

2. Spontaneous emission of a single dipole in a Bragg onion resonator 

The modified spontaneous emission of a light emitter in an optical microcavity can be 
analyzed using a classical model. In this model, which was developed in Ref. [16], the light 
emitter is described as an oscillating electric dipole that interacts with its own reflected field 
[16,18,19]. The modified spontaneous emission rate is given by the decay rate of a dipole 
oscillator governed by the following equation: 

pbtEmqpp R ��� 0
22

0 )()/( −=+ ω                 (1) 

where p is the electric dipole moment of the atomic transition, ω0 is the intrinsic dipole 
oscillation frequency in the absence of all damping, and b0 is the spontaneous emission rate of 
a light emitter in the bulk material. The extra term (q2/m)ER(t) in Eq. (1) accounts for the 
modification of spontaneous emission rate within the microcavity. More precisely, ER(t) is the 
component of the reflected field (due to the microcavity) that is located at the position of the 
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dipole source and is parallel to the dipole moment. The two parameters q and m respectively 
describe the effective charge and the effective mass of the dipole oscillator. The exact values 
of q and m are not significant, since they only appear in the final expression of the modified 
spontaneous emission rate in the form of:  

        )6/(/ 3
000

2
00

2 cbnqm πεω=                (2) 

where n0=(ε/ε0)1/2 is the refractive index of the bulk core material, ε0 and c0 are respectively 
the permittivity and the speed of light in free space. The relation Eq. (2) is derived using the 
classical radiation dipole model. For a more detailed explanation, the reader can consult Ref. 
[20].  
 In order to find the solution of Eq. (1), we assume that both the dipole moment p and the 
reflected field component ER(t) oscillate at the same modified complex frequency: 

          ( )[ ]tbipp 2/exp0 +−= ϖ                 (3a) 

( ) ( )[ ]tbiEtER 2/exp0 +−= ϖ             (3b) 

where b corresponds to the modified spontaneous emission rate, ω is the modified emission 
frequency, p0 and E0 are respectively the amplitudes of the dipole moment and the reflected 
field component. By substituting Eqs. (2) and (3) into Eq. (1), we find that the normalized 
spontaneous emission rate and frequency shift in the presence of the micro-cavity are given 
by:   

( )SEEbb /Re1/ 00 +=                         (4a) 

  ( ) ( )SEEb /Im2/1/ 000 ⋅=− ωω          (4b) 

where we assume that both b and 0ωωω −=Δ  are much smaller than ω0. The two terms ES, 
and E0 in Eq. (4) are respectively given by: 

      πωμ 6/0
2
00 kpiES =                   (5a) 

         ( ) ( )[ ]{ }  ˆlim1
0 rDrDE TM

R
TE
R

orr

���

��

+⋅=
→

− αε           (5b) 

where 000/ ck ωεε= is the wave vector, ε and μ0 are respectively the permittivity and 

permeability of the bulk material. In the case of Bragg onion resonators, since the light 
emitters are confined within the onion core, ε and μ0 also represent the permittivity and 

permeability of the core material. In Eq. (5b), α̂�  is the unit vector along the orientation of 
the light emitting dipole, and E0 is defined after Eq. (3b). The two terms TE

RD  and TM
RD  

correspond to, respectively, the transverse electric (TE) and transverse magnetic (TM) 
component of the reflected field, which can be obtained using dyadic Green’s function. Due to 
the spherical symmetry of the onion resonator, we can separate TE

RD  and TM
RD  into multiple 

components using spherical harmonics expansion and characterize each component with a 
pair of angular quantum numbers l, and m. The detailed forms of TE

RD  and TM
RD  are given 

in Appendix A as Eq. (A4a)-(A4b). With some straightforward calculation and application of 
appropriate boundary conditions, we find the following expression for E0: 
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 The detailed derivation of Eq. (6) is given in Appendix A. Here it suffices to mention that 
( )krjl  and ( )krhl  are respectively the lth order spherical Bessel and Hankel function, 

whereas TM
lmE

�

 and TE
lmE

�

 are defined as: 
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 In Eq. (7), )1(),(ˆ +⋅= llYLX lmlm ϕθ
�

 is the spherical vector function. The only 

undefined quantities in Eq. (6) are the two parameters TE
lρ  and TM

lρ , which are defined as 
the field amplitude reflection coefficients of the lth order TE and TM multipole modes at the 
interface between the onion core and the innermost cladding layer [16].The amplitude 
reflection coefficients TE

lρ  and TM
lρ  can be calculated using the transfer matrix method 

described in Ref. [14, 15] and the derivation is summarized as follows.  
First, the field in each dielectric layer of the onion resonator can be expressed as a 

superposition of different (l,m) multipole orders. Due to the spherical symmetry of the 
structure, individual multipole fields with different l and m are independent of each other. For 
a given pair of angular quantum number l and m, the TE or TM components within the nth 
dielectric layer is: 
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where Zn=(μ0/εn)
1/2 is the material impedance, and kn=(εn /ε0)

1/2
ω0/c0 is the wave vector within 

the nth layer. The four linear coefficients An, Bn, Cn and Dn, are constant within the nth layer. 
Since the spherical Hankel functions )(1

col krh  and )(2
col krh  represent, respectively, the 

outgoing and the incoming wave, the amplitude reflection coefficient lρ  at the core-cladding 
interface in Eq. (7) is can be determined from Eq. (8) as [16] 
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 Employing the continuity condition of φθφθ HHEE ,,,  at the interface between two 

adjacent layers and the orthogonality of the spherical harmonics, we can relate the linear 
coefficients in the onion core (Aco, Bco, Cco, Dco) to those outside the onion resonator (Aout, Bout, 
Cout, Dout) through two by two matrices TM

lM and TE
lM [14]: 
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 Combining Eq. (10) with the boundary condition that there is no incoming wave outside 
the onion resonator, i.e. 0=outB  and 0=outD , we can express coco AB and coco DC  as a 

function of the individual elements of the two-by-two matrices TM
lM and TE

lM : 
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 The subscripts of 1 or 2 in the equation above refer to the row and column indices of the 
matrix element. Substituting Eq. (11) into Eq. (9), we find: 
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 Applying Eq. (6)-(7) and Eq. (12) to Eq. (4a)-(4b), the normalized modified spontaneous 
emission rate and the frequency shift take the form of 
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where the superscript TM,TE implies summation over both TM and TE modes.  
In the literature, there is another classical approach that gives the modified spontaneous 

emission rate [17,19,21]. In this model, the decaying rate in the presence of the cavity 
normalized by the bulk emission rate is identical to the total radiation power of a classical 
dipole in the micro-cavity, cavP , divided by the dipole radiation power in the bulk material, 

bulkP . Using this approach, we demonstrate in Appendix B that the normalized modified 
spontaneous emission rate can also be expressed as 
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 In deriving above equation I assumed the core and the outer space of the Bragg onion 
resonator are filled with the same material. In Appendix B, we prove that this formula is 
equivalent to the result given in Eq. (13a). The advantage of Eq. (14) compared to Eq. (13a) is 
that the contribution of each individual multipole component to the total spontaneous 
emission rate is explicitly given, which can be used to test the convergence of the calculated 
spontaneous emission rate. 

3. Numerical results and analysis 

In this section, we use the analytical algorithm described in the previous section to study the 
spontaneous emission modification in an onion resonator. We first calculate the spontaneous 
emission rate of a single dipole emitter arbitrarily located within the onion cavity core. Next, we 
extend the analysis to an ensemble of dipoles uniformly distributed within the cavity core and 
study the dependence of the average spontaneous emission rate on various cavity parameters. 
Finally we briefly consider the non-exponential decaying of the dipole ensemble due to their 
non-uniformly decaying behavior. In all calculations, we use parameters similar to the samples 
that have been successfully fabricated and reported in Ref. [15]. The core is assumed to be air 
unless specified otherwise. We mainly consider two types of onion resonators: One with 
cladding layers composed of silicon and SiO2, the other one with cladding layer composed of 
SiO2 and Si3N4. For the onion resonators considered in this paper, the silicon cladding layers 
have a refractive index of 3.5 and a thickness of 0.111 μm, whereas the refractive index and the 
thickness of the SiO2 layers are respectively 1.5 and 0.258 μm. For the Si3N4 layers, the 
refractive index is 2.1 and the thickness is 0.185 μm. The parameters of the Bragg cladding 
pairs are chosen such that the bandgap center is located at 1.55 μm. 

3.1 A single dipole emitter located at the center of the onion resonator 

We first consider the simplest case of spontaneous emission modification in the onion 
resonator, in which a single dipole is positioned at the center of the onion resonator. In this case, 
the dipole can only couple to the TM1 mode, since this is the only multipole component that 
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provides a non-zero contribution to the summation in Eq. (13) [16]. The numerical results of 
the modified spontaneous emission rate and the frequency shift are plotted in Fig. 2(a)-(c). As 
expected, if the dipole emission frequency coincides with the frequency of the onion resonator 
modes, the spontaneous emission rate can be significantly enhanced, and the enhancement 
ratio increases with the addition of more Bragg cladding layers. On the other hand, if the 
dipole emission frequency does not coincide with any of the cavity modal frequencies, the 
spontaneous emission rate can be reduced by several orders of magnitude. In fact, with just six 
Bragg layers, we can achieve spontaneous emission enhancement of approximately 104 times 
in the on-resonance case and spontaneous emission inhibition of the order of 10-4 in the 
off-resonance case.  
 

 
Fig. 2. (a). Enhancement of the spontaneous emission.  (b). Inhibition of the spontaneous 
emission.  (c). Spectral dependence of the normalized frequency shift. Here the dipole is 
fixed at the center of the Bragg onion  sphere. The dotted, dash-dotted, dashed and solid 
lines correspond to a rising Bragg layer number of NBragg = 3, 4, 5 and 6. 

 

3.2 Dependence of modified spontaneous emission rate on the dipole position 

Here we consider the dependence of the spontaneous emission rate on the position of a single 
dipole emitter located within the onion core. Due to the spherical symmetry of the structure, 
we can always assume that the dipole is located on the z

�  axis and its corresponding 
spherical coordinate is =0r

�

(r, 0, 0). In this case, the spontaneous emission rate depends on 
both the displacement from the center of the onion resonator, r, and the orientation of the 

#71220 - $15.00 USD Received 25 May 2006; revised 19 July 2006; accepted 20 July 2006

(C) 2006 OSA 7 August 2006 / Vol. 14,  No. 16 / OPTICS EXPRESS  7405



dipole oscillator α
�

�

. We can further decompose the dipole polarization α
�

�

 into a radial 
component and a transverse component and consider only two cases: the radial polarization 

case where α
�

�

 aligns along the radial direction; and the case of transverse polarization where 

α
�

�

 lies within the transverse plane. For these two different polarization cases, we respectively 
denote the corresponding spontaneous emission rate as ⊥b  (radial) and //b  (transverse). 

Without a loss of generality, we can also assume that α
�

�

 is along the x axis in the case of 
transverse polarization. Substituting =0r

�

 (r, 0, 0) into Eq. (13a) we find: 
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Fig. 3. (a). Radial dependence of the electric field of TE1, TM2 and TE24 eigenmodes. TE1 and 
TE24 modes only have a transverse electric component while TM2 mode has both the radial and 
the transverse electric components.  (b)–(d). Radial dependence of the normalized radial 

damping rate 0/ bb⊥ (red dashed line) and transverse 0
// / bb (blue solid line). Results in 

(b)–(d) are calculated at the wavelength λ =1.556445μm, 1.559715μm and 1.541255μm, 

which are the eigen-wavelength of TE1, TM2 and TE24 modes respectively. NBragg = 6 is used 
here. 
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In Fig. 3(b)-(d), we show the normalized spontaneous emission rates for the radial 
( 0/ bb⊥ ) and the transverse ( 0

// / bb ) polarization as a function of the dipole position. We first 
consider three different modes (TE1, TM2 and TE24 modes) and calculate the spontaneous 
emission rate at the three corresponding modal wavelengths ( λ =1.556445μm, 1.559715μm 
and 1.541255μm). The radial dependence of the electric field of the TE1, TM2 and TE24 mode 
are also plotted In Fig. 3(a). As can be seen from Fig. 3(a)-(d), at the resonant wavelength of 
the onion cavity mode, the spatial dependence of the spontaneous emission rate of a single 
dipole emitter follows the electric field distribution of the corresponding resonant mode. Such 
behavior can be explained by the fact that in the “on-resonance” case, the spontaneous 
emission process is dominated by the radiation into the resonant high Q mode. The other 
interesting point is that at the resonance of a TE mode (see Fig. 3(b) and Fig. 3(d), the 
spontaneous emission of a dipole oscillating along the radial direction ( 0/ bb⊥ ) is strongly 
inhibited, whereas that of a dipole oscillating along the tangential direction is significantly 
enhanced. This is due to the fact that the radial component of the electric field of TE modes is 
zero. Consequently the dipole polarized along the radial direction can only couple to the TM 
modes, which is off resonance at the given wavelength. 

3.3 Radiation from a dipole ensemble within the onion resonator core  

In experiments, it can be very challenging to place a single light emitter (such as an organic 
molecule or a gas phase atom) at a specific location within the onion resonator core. Instead, 
it’s easier to fill the entire onion core with an ensemble of light emitters. By exciting the light 
emitters and measuring the temporal variation of the radiation power, we can experimentally 
extract the ensemble average of the modified spontaneous emission rate. In this case, both the 
spatial position and the orientation of the dipoles have a strong dependence on the external 
parameters such as the profile and polarization of the excitation field. For a quantitative 
estimate, we assume that the light emitting dipoles are uniformly distributed within the entire 
onion core with random polarizations (as in Ref [18]). Consequently, the spontaneous 
emission rate at a given position r

�

 averaged over all possible dipole orientation, i.e. 
( )

dir
brb 0/

�

, is given by:  

              ( ) ( ) π4//,/ 00 ∫ ΩΩ= dbrbbrb
dir

��

      (16) 

where the angular integration is over all the possible polarization directions. By substituting 
Eq. (13a) into Eq. (16), we notice that for each multipole order (l, m), the contribution to the 

average spontaneous emission rate involves the integration of 
2

,ˆ TETM
lmE

�

�

⋅α  over the angular 

distribution of the dipole source, which can be simplified as: 
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where α̂�  is the unit vector representing the dipole orientation, and TETM
lmE ,

�

is the electric field 
defined in Eq. (7a)-(7b). Since the first term on the right hand side of Eq. (17) corresponds to the 
radial spontaneous emission rate and both the second and the third term correspond to the 
transverse spontaneous emission rate, we can simplify Eq. (16) as:  

 ( ) ( ) 3//2// 0
//

00 bbbbbrb
dir

⋅+= ⊥�

       (18) 

 with 0/ bb⊥  and 0
// / bb  given in Eq. (15a) and Eq. (15b). Next we need to average 

( )
dir

brb 0/
�

 over the spatial distribution of the dipole sources to have the ensemble-averaged 

spontaneous emission decaying rate 
vol

bb 0/ , which is 
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where rco is the radius of the onion resonator core. Substituting Eq. (15a)-(15b) and Eq. (18) 
into Eq. (19) and using the integral identity of the Bessel functions [18], we obtain 
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where lP  and lQ  are the integrals of the Bessel functions and take the form of 
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 We can also calculate the average spontaneous emission rate by using the alternative 
expression for the spontaneous emission rate (Eq. (14)). Following the same procedure, we 
find that the average spontaneous emission rate can also be expressed as: 
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 Since according to Eq. (22) the cavity modified spontaneous emission rate has 
contributions from all multipole orders, it is necessary to investigate the convergence of the 
summation in the equation. We first classify the onion resonator modes with various multipole 
order l into two groups1: the core modes (which concentrate within the cavity core and are 
confined by the Bragg reflection), and the cladding modes (which are mainly confined in the 
cladding layers through total internal reflection (TIR)). The core modes typically have smaller 
angular quantum number l that satisfies λπ /2 coco rnl ⋅≤ , where con  is the refractive index of 
the onion resonator core. Examples of core modes are shown in Fig. 3(a). The cladding modes 
generally have angular quantum number l greater than λπ /2 coco rn ⋅ . Examples of cladding 
modes are shown in Fig. 4.  

 

    
Fig. 4. The radial dependence of the magnetic field of the cladding modes. The fields of both 
modes are evanescent in the core. The field of TM32 mode decays quickly in the cladding due to 
the Bragg reflection. While the field of TM44 mode is propagating in the cladding layer and is 

confined by TIR at the outer surface. Here we use mrco μ7=  and NBragg = 7.  

 
In Fig. 5, we use three different onion structures to illustrate the relative strength of 

spontaneous emission into different mutlipole order l. We use Eq. (22) and choose the 
wavelength at 1.543 μm, which is an off-resonance case for all three different onion cavities. 
The parameters of the onion resonators are given in the figure and the figure caption. As can 
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be seen from the figure, most of the contributions to the ensemble-averaged total spontaneous 
emission rate come from the core modes ( l <30 for mrco μ7= ) and some cladding modes 

(45>l>30 for mrco μ7= )). The contributions from the cladding modes with very large angular 
quantum number l decrease very fast, which ensures the convergence of the summation in Eq. 
(20) and (22). 

 

       
Fig. 5. The partial averaged spontaneous emission rate as a function of the modal number L (i.e. 
the lth term in Eq. (22)). 

 
Fig. 5 also has several other interesting features. First we notice that the core modes with 

l less than 10 does not contribute significantly to the cavity modified spontaneous emission 
rate, which is due to the fact that the light emitter frequency does not coincide with any of the 
core modes. It is also clear that among the cladding modes, those with a relatively smaller 
angular quantum number l have a much stronger coupling to the light emitter within the onion 
core. This can be explained by the observation that the cladding modes with smaller l 
penetrate deeper into the onion core, as shown in Fig. 4. 

 

 
Fig. 6. (a) Spectrum of the onion resonator eigenmodes with modal number 24≤l . (b). 

Spectral dependence of the ensemble averaged damping rate. mrco μ7=  and NBragg = 4 are 

used in the calculation. 
 

 In Fig. 6(b) we plot the spectral dependence of the average spontaneous emission rate for 
an onion resonator with four pairs of cladding layers. The frequencies of the onion resonator 
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modes are calculated using the transfer matrix method [14] and shown in Fig. 6(a). It is 
evident that the peak positions in spontaneous emission rate spectrum (Fig. 6(b)) match the 
wavelengths of the onion resonator modes shown in Fig. 6(a). Furthermore, we notice that 
with only four pairs of cladding layers, we can already achieve an average inhibition of the 
order of 0.05~0.1 in the off resonance and an enhancement of the order of 10 if the light 
emitter frequency coincides with that of the onion resonator modes.  
 For the on-resonance cases, if we ignore the linewidth of the light emitting material (as 
in our calculations), the enhancement of the spontaneous emission rate at the resonant 
frequency of a dominant cavity mode can be estimated as [15, 22]  

      ( )eff
cavcavvol

VQbb 23
0 4// πλβ ==        (23)  

where λ  is the optical wavelength, eff
cavV  is the effective modal volume and cavQ  is the 

quality factor of the cavity mode. Since the quality factor of the core modes increases 
exponentially as a function of the cladding layer number [14], we expect that the resonance 
enhancement of spontaneous emission rate also increases exponentially with cladN . As an 

example, we calculate the peak enhancement ratio 
vol

bb 0/  at the resonant wavelength of 

the TE1, TM2 and TE24 modes as a function of the cladding pair number NBragg. The results, 
which are given in Fig. 7, clearly demonstrate an excellent exponential dependence. 
 

 
Fig. 7. Enhancement of the ensemble averaged spontaneous emission decaying rate as a 
function of the cladding layer number. The “plus”, “star” and “circle” are values of the peaks in 
Fig. 6 corresponding to TE1, TM2 and TE24 resonance modes respectively.  

 
3.4 Spontaneous emission inhibition in Bragg onion resonators 

A unique feature of the onion resonators is the possibility of significant spontaneous emission 
inhibition, which is important for many quantum optics applications [6,7,23-25]. If the onion 
resonator has cladding layers with a very large index contrast and a sufficiently large core 
radius, the onion cladding layer can be regarded as an omnidirectional reflector, which 
behaves as perfect metal and can effectively isolate the vacuum field within the onion 
resonator from the free space vacuum field. In this case, the light emitter within the onion core 
can no longer couple to the free space vacuum field, which lead to significant spontaneous 
emission inhibition in the onion cavity, as we have observed in previous analytical results. 
However, for onion resonators with a small number of cladding pairs, or those with relatively 
low-index contrast cladding layers, or smaller core radius, the aforementioned simple analysis 
may no longer apply. In this section, we analyze the spontaneous emission inhibition of dipole 
ensembles in onion resonators with different parameters such as cladding pair number NBragg, 
cladding index contrast, core radius, and the refractive index of the core material. We focus 
primarily on cases where we may no longer approximate the onion cladding layers as an 
omnidirectional mirror any more. We demonstrate that even for such “non-ideal” onion 
resonators, we can still achieve spontaneous emission suppression for at least two orders of 
magnitude. 
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Fig. 8. Suppression of the damping rate for different core radii of 7μm and 4.65 μm 
respectively.  In both (a) and (b), the green circles and the red stars correspond to Bragg layer 
number NBragg = 6 and 7 respectively.  

 
Fig. 9. (a) The partial averaged damping rate as a function of the modal number l (the lth term 
in Eq. (22)).   (b) and (c). Averaged damping rate for different cladding layer index contrast. 
We use core radius of 7μm in (a) and (b), and 4.65μm in (c). The data is calculated at 

mμλ 543.1=  in (a). In all figures, the red “asterisk” is for 5.1/1.2/ 21 =nn  and NBrag,= 15, 

the green “circle” is for 5.1/5.3/ 21 =nn  and NBragg = 6. 

 

 We first study the dependence of the spontaneous emission inhibition on the cladding 
pair number NBragg, assuming the core radius to be 7 μm. It is instructive to first consider the 
results in Fig. 5. Comparing the two cases (one with NBragg = 5 and the other with NBragg = 7), 
we find that the additional cladding layers significantly reduce the spontaneous emission rate 
into multipole components with small angular quantum number (l<30). The spontaneous 
emission rate into larger multipole components (38< l <44), however, remains approximately 
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the same even as NBragg increases. This is to be expected since the larger multipole 
components account for contributions from the cladding modes. In Fig. 8, we show the spectra 
of total average spontaneous emission rate in onion resonators with two different core radii. 
The results clearly show that we can achieve spontaneous emission inhibition up to two orders 
of magnitude with seven pairs of cladding layers, and the radius of the onion core does not 
have a significant impact on the degrees of spontaneous emission inhibition. 
 The cladding layers of onion resonators can be constructed from other dielectric 
materials besides Si and SiO2. Using a fabrication technique similar to those discussed in Ref. 
[14], we can realize onion resonators with SiO2 and Si3N4 as cladding layer materials. Since 
both SiO2 and Si3N4 are transparent for visible light, the onion resonators with SiO2/Si3N4 
cladding layers are ideal for applications in the visible range. However, due to a smaller index 
contrast, the SiO2/Si3N4 cladding layers no longer form omnidirectional reflectors. Therefore, 
it is of interests to investigate the inhibition of spontaneous emission in onion resonators with 
SiO2/Si3N4 cladding. The parameters of the SiO2/Si3N4 layers in our calculations are given 
at the beginning of section 3. 
 For comparison among various onion resonators with different cladding materials, we 
choose to compare those with similar quality factors, since the cavity quality factor is the one 
parameter that can effectively describe the separation between the high Q cavity mode and the 
free space radiation mode, which is of the utmost importance in our analysis. With this 
requirement in mind, we will compare SiO2/Si3N4 onion resonators with 15 cladding pairs 
with SiO2/Si onion resonators of 6 cladding pairs. The quality factors of the TE1 mode in these 
two onion resonators are respectively 5109613.1 ×  and 5108759.1 × . In Fig. 9(a), we show the 
averaged spontaneous emission rate into various multipole order l in SiO2/Si3N4 and SiO2/Si 
onion resonators. We notice that for the SiO2/Si3N4 and the SiO2/Si onion resonators, the 
spontaneous emission rate into a given multipole order l are very similar in magnitude if the 
multipole order l is relatively small. On the other hand, for larger multipole orders, the partial 
spontaneous emission rate of the SiO2/Si3N4 onion resonator is generally larger than that of 
the SiO2/Si onion resonators. Such behavior can be attributed to the fact that the SiO2/Si 
cladding layers can provide optical confinement equally well for both larger and smaller 
multipole orders (due to their large index contrast), whereas the SiO2/Si3N4 cladding layers are 
less effective in providing confinement for radiation fields with larger multipole orders. In Fig. 
9(b) and Fig. 9(c), we show the total average spontaneous emission rate in a SiO2/Si3N4 onion 
resonator and a corresponding SiO2/Si onion resonator. The results demonstrate that for two 
Bragg onion resonators with similar quality factors, the one with SiO2/Si cladding layers can 
achieve better spontaneous emission inhibition as compared to the resonator with SiO2/Si3N4 
cladding layers. However, it should be noted that the degree of spontaneous emission 
inhibition in a SiO2/Si3N4 onion resonator is only marginally less than that of a comparable 
SiO2/Si onion resonator, which is approximately a factor of two. 
 In order to experimentally investigate spontaneous emission modification in a Bragg 
onion resonator, one particular attractive approach is to immerse the entire onion structure into 
water based solution doped with light emitting materials. In Fig. 10, we compare the 
spontaneous emission inhibition in an air-core onion resonator with an onion resonator filled 
with water-based solution. With a larger refractive index (nco = 1.33), the wave vector in a 
water-filled onion resonator is smaller compared to that in an air core onion resonator, which 
means an onion resonator with a water-filled core can support higher order multipole modes. 
Therefore, the light emitter within the solution filled onion cavity can couple to more mutlipole 
components, which is clearly shown in Fig. 10(a). As a result, we expect that the inhibition of 
spontaneous emission should be less pronounced in the water core onion resonator as compared 
to the air core onion resonator. In Fig. 10(b) and (10c), we show the total average spontaneous 
emission rate in a water core onion resonator and the corresponding air core resonator. As 
expected, the off resonance spontaneous emission rate in a water core onion resonator is similar 
or slightly larger than that in an air core resonator. However, our calculations also demonstrate 
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that it is possible to achieve a two orders of magnitude reduction in the spontaneous emission 
rate in a solution-filled onion resonator.  
 

                      
Fig. 10. (a) The partial averaged damping rate as a function of the modal number l (the lth term 
in Eq. (22)).   (b) and (c). The averaged damping rate for the Bragg onion resonator immersed 
in different media. We assume the core area and surrounding area are filled with the light 
emitting media whose index is 0n .  We use core radius of 7μm in (a) and (b), and 4.65μm 

in (c). The data is calculated at mμλ 548.1=  in (a)-(c). In all figures, we use NBragg = 7, 

0n =1 for the “asterisk” and 0n =1.33 for the “circle”.   

 
3.5 Non-exponential averaged decaying 

In the above analysis of onion resonators, we assume that the average spontaneous emission 
rate provides an adequate description of the spontaneous emission process in the microcavity. 
However, due to the sharp variation of spontaneous emission rate as a function of both the 
position and polarization of the light emitter, we expect that the spontaneous emission from 
the dipole ensemble within the onion core can be non-exponential, and an average 
spontaneous emission rate does not contain the complete information on the cavity modified 
spontaneous emission process. In this section, we provide a few examples that illustrate a 
more complicated picture for the spontaneous emission in the onion resonator. 

 In order to simplify our analysis, we assume that all of the light emitters within the onion 
core are excited at the time t = 0. Subsequently at a later time t, the total number of light 
emitters at the excited state is 

 ( )( ) ( ) π4/,,exp)( 3 Ω⋅Ω⋅⋅Ω−= ∫∫ drdrntrbtN
���

        (24) 

where ( )Ω,rn
�

 describes the initial distribution of the light emitters at the excited state as a 
function of the dipole position r

�

 and polarization ( )ϕθ ,=Ω . To further simplify 
calculations, we assume the initial distribution function ( )Ω,rn

�

 to be a constant number n0 
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and consider the local spontaneous emission rate to be independent of the dipole polarization. 
In reality, the spontaneous emission rate of an individual dipole source may have a strong 
dependence on the dipole polarization (as shown in Fig. 3). However, the assumption of a 
polarization independent local spontaneous emission rate greatly simplifies the integration in 
Eq. (24), and also allows a qualitatively analysis of the non-exponential spontaneous decay in 
the onion resonator. With these considerations, Eq. 24 is simplified as:   

     ( )( )∫∫ ⋅−= rdtbrbntN
dir

�� 3
00 /exp)(               (25) 

where ( )
dir

brb 0/
�

 is the local spontaneous emission rate averaged over all the possible 

dipole orientation and is given by Eq. (18). The optical radiation power due to the dipole 
ensemble in the onion core can be obtained from Eq. (25):  

      ( )( ) ( )∫∫ ⋅−=⋅= rdbrbtbrbndttdNtP
dirdir

���
��

3
000 //exp/)()( υυ    (26) 

where υ�  is the energy of a single photon. From Eq. (26), we can define a time dependent 
average damping rate as 

( ) ( ) ( )( )dttdPtPtb //1 ⋅=         (27) 

 

 
Fig. 11. Normalized radiation power (the left column) and the derived averaged decaying rate 

( )tb (the right column) as a function of time. The red solid line stands for the exponential 

decaying, the blue dashed line stands for the non-exponential decaying. The exponential 
decaying rate is calculated with Eq. (22). We use parameters 7=cor μm, NBragg = 4 in the 

calculation and choose two wavelengths: 1.55972μm (eigenwavelength of TM2 mode) and 
1.548μm (off resonance). 

 
 For an onion resonator with a core radius of 7 μm and four pairs of SiO2/Si cladding 
pairs, we analyze the time dependent spontaneous emission at λ = 1.55972μm, which 
correspond to the resonant wavelength of the TM2 mode, and λ=1.548μm, which is off cavity 
resonance. In Fig. 11, we plot the temporal variation of the spontaneous radiation power and 
the time dependent spontaneous emission rate. From Fig. 11, we notice that initially, the total 
radiation power calculated from Eq. (26) decays faster than the results obtained assuming 
exponential decay. On the other hand, at later time the rate of non-exponential decay becomes 
smaller than the average spontaneous emission rate obtained assuming exponential decay. 
Since the spontaneous emission from the light emitter ensemble contains both fast-decaying 
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and slow-decaying dipoles, it is reasonable to expect that the total radiation from the dipole 
ensemble begins with contributions from fast-decaying light emitters followed by 
slow-decaying light emitters, as shown in Fig. 11. From the results shown in Fig. 11, we can 
also conclude that the average spontaneous emission rate as defined in Eq. (22) provides a 
reasonably good description of the decay of the dipole ensemble within the onion resonator, 
even though the time dependent spontaneous emission rate changes after the initial excitation. 

4. Discussion 

In above analysis, we assume the structure is a perfect onion sphere and haven’t addressed the 
influence on the spontaneous emission of the open stem in the real sample shown in Fig. 1. 
We estimated in Ref [14] that the presence of the stem has very little impact on the quality 
factor of the core modes, thus it won’t have significant influence on the resonance 
enhancement ratio. In practice, the observation of Purcell effect in a high Q cavity is limited 
by the large spectral width of commonly used emitters (~20nm at 300K for rare-earth atoms 
[12]). To date, quantum dots are used extensively to study the Purcell effect in 
semiconductors because of their narrow spectral lineshape [12,25]. In the case of radiation 
suppression, we pointed out in Ref [14] the contribution of the “stem” leakage to the radiation 
rate can be roughly estimated from the fraction of the solid angle spanned by the “stem”, or 

( )2
0 2// costemstem rrbb = . The practical value for the stem radius and the core radius are 1μm and 

7μm, thus we obtain ~/ 0bbstem 0.5%. In our analysis ( e.g., Fig. 9), a suppressed of  ~1% can 
be achieved with NBragg = 7. Thus we expect that the suppression ratio can be limited by the 
presence of the stem only for very large NBragg > 8.  

5. Conclusion 

In this paper, we utilize two different approaches to calculate the spontaneous emission of a 
dipole inside the core of a Bragg Onion spherical resonator. Using the parameters of the 
realized structure, we calculate the detuning of the modified spontaneous emission of a dipole 
located at the center and the profile of the damping rate as a function of the dipole position. To 
account for the real case, we further calculate the average damping rate for an ensemble of 
excited emitters inside the core. Dependence of the ensemble-averaged damping rate on 
different parameters is also discussed. An enhancement ratio of 32 10~10 upon resonance and 
a suppression ratio of ~ 210−  off resonance can be achieved with 7 Bragg cladding layers. 
Finally, the assumption that the averaged radiation decays exponentially is examined. The 
analysis presented in this paper should provide a quantitative foundation for future 
experimental investigation of onion resoantors.  

Appendix 

A. Derivation of the reflected electric field  

To calculate the field reflected by the cladding layers, we start with the result given in Ref [16] 
and summarize it as follows. For an oscillating dipole located at position 0r

�

 in the Bragg 

onion core and polarized along direction α̂� , the source field is governed by the vector wave 
equation (assuming )exp( 0tiω−  harmonic time dependence)  

          ( ) ( ) ( )rJirDrD ss

�

�

�

�

�

���

εωμεμω 000
2
0 =−×∇×∇          (A1) 

Where 0ω  is the angular frequency, 0μ  and ε  are the constant permeability and 

permittivity of the core material, ( )αδω
�

���
�

000 rrpiJ −−=  is the current density, and 0p  is the 
amplitude of the dipole moment. Employing the dyadic Green’s function method [26], the 
transverse magnetic (TM) component and transverse electric (TE) component of the source 
field satisfy  
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     ( )[ ] ( )000000 ,/ rrgrriJrDr
TM

s

���

��

��

�

�

×∇×∇⋅⋅=⋅ ω , 0rr
��

≠       (A2a) 

     ( )[ ] ( ),,ˆ
00000 rrgrJrBr

TE

s

���

�

��

�

�

×∇⋅=⋅ αμ      0rr
��

≠         (A2b) 

where 000 piJ ω−=  is the current amplitude, ( ) ( ) 000 4/exp, rrrrikrrg
������

−−= π  is the 

three-dimensional scalar Green’s function. The subscript “0” in the gradient operator 0∇
�

 

means the operator is acting on the source variable 0r
�

. ( )0, rrg
��

 can be expanded in terms of 
spherical waves such that 

                ( ) ( ) ( ) ( ) ( )∑∑
∞

= −=

∗
><=

0

00
1

0 ,,,
l

l

lm

lmlmll YYkrhkrjikrrg ϕθϕθ��

   (A3) 

where )( <krj  and )(1
>krhl are respectively the spherical Bessel function and the spherical 

Hankel function of the first kind, ( )ϕθ ,lmY  is the spherical harmonics function, >r ( <r ) is the 

greater (lesser) of r and 0r . The reflected field is coming from the source field reflected by 
the cladding and should have similar forms to the source field. We can thus express the 
reflected fields according to Eq. (A2a)-(A3) as   

        ( ) ( ) ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
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TE
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R YLkrjA

ll
rOrD ϕθεω ��
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             (A4b) 

where ( ) TMTE
lmA ,  are constant amplitudes decided by boundary condition, irL /ˆ ∇×=

�

�

 is the 

angular momentum operator, ( )0rOTM
S

�

 and ( )0rOTE
S

�

 are operators acting on the source 
variable, which can be expressed as 

      ( ) 000000
ˆ rkJrOTM

S

�

��

��

×∇×∇⋅⋅−= αω            (A5a) 

        ( ) 00000
ˆ rkJirOTE

S

�

�

��

×∇⋅= αμ         (A5b) 

  In Eq. (A4a)-(A4b) we only employ the spherical Bessel function of the first kind, ( )krjl , 

because the reflected field must be nonsingular at the center 0=r . The total field in the core 
is the sum of the source field and the reflected field and must satisfy the boundary conditions: 
at the core-cladding interface, the sum of the inward-traveling radial waves is equal to the sum 
of the product of the outward-traveling radial waves and the field amplitude reflection 
coefficient. Employing the boundary condition we obtain the constant amplitudes 

         ( ) ( ) ( ) ( )
( ) ( )col
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lmlcol
TMTE

lTMTE
lm
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Ykrjkrh
A

1,2
00

*
0
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ρ
ϕθρ

−
=         (A6) 

where lρ  is the field amplitude reflection coefficient of the l th order multipole mode at the 

core-cladding interface, cor  is the radius of the core. Substituting Eq. (A6) into Eq. 
(A4a)-(A4b), and applying the result to Eq. (5b), the reflected electric field component along 
the dipole moment orientation at the source position normalized by parameter SE (Eq. (5a)) is 
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where the vectors TM
lmE

�

 and TE
lmE

�

are defined as 

          kXkrjE lml
TM
lm

���

)(×∇=                          (A8a) 

   )1()(),(ˆ)( +== llXkrjYLkrjE lmllml
TE
lm

��

ϕθ                (A8b) 

where )1(),(ˆ +⋅= llYLX lmlm ϕθ
�

 is the spherical vector function [27]. In the summation in 

Eq. (A7), the term with 0=l  is dropped because ( ) 0,00 ≡ϕθX
�

. 

B. Direct evaluation of the modified decaying rate by calculating the radiation power  

In this section, we derive the modified spontaneous emission rate (Eq. (13a)) using another 
classical approach [17,19,21,26]. In this model, the decaying rate in the presence of the cavity 
normalized by the bulk emission rate is identical to the total radiation power of a classical 
dipole in the micro-cavity, cavP , divided by the dipole radiation power in the bulk material, 

bulkP . For an oscillating dipole located at 0r
�

, the radiative electric field at 0rr >  in the core 
can be expanded in terms of the multipole modes [28]  

    [ ]∑ +×∇⋅=
ml

lmcolMlmcolEcocodip XrkhmlaXrkhmlakiZE
,

11 )(),()(),(
����

  (B1) 

where   ( )[ ] ( ) rdrkjJrikrkrj
dr

d
cYllkimla colcocollmcoE
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∫ ⎭
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⎩
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⎧ ⋅+⋅+⋅−= ∗ )()1(),( 2 ρ    (B2a) 
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�

�

∫ ×⋅∇⋅+⋅−= ∗ )()1(),( 2           (B2b) 

 cocoZ εμ /0=  is the material impedance and 000 // ck coco ωεε=  is the wave vector. 

Here coε  is the constant permittivity of the core material. The source current is 

( )αδω
�

���
�

000 rrpiJ −−=  and the charge density is ( )αδρ ˆ
00

���

�

rrp −∇−= , then Eq. (B2a) and (B2b) 
can be simplified to 

       ( ) ( )[ ]
0

 ,ˆ)1(),( 0 rrlmcolcoE YrkjrllJkmla ��
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��
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       ( ) ( )[ ]
0

 ,ˆ)1(),( 0
2
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�

�

�

=
∗×∇⋅⋅+= ϕθα     (B3b) 

where 000 piJ ω−=  is again the dipole current amplitude. The total field inside the cavity 
core is composed of the direct radiation field of the dipole (Eq. (B1)) plus the field reflected 
from the boundary, i.e. 

              refdipcore EEE
���

+=       (B4) 

 The reflected field is source-free and can be expanded as  

   [ ]∑ +×∇⋅=
ml

lmcolMlmcolEcocoref XrkjmlbXrkjmlbkiZE
,

)(),()(),(
����

  (B5) 

 The total radiation field outside the Bragg sphere is  

   [ ]∑ +×∇⋅=
ml

lmoutlMlmoutlEoutoutrad XrkhmlcXrkhmlckiZE
,

11 )(),()(),(
����

     (B6) 

where outoutZ εμ /0= , 000 // ck outout ωεε=  and outε  is the constant permittivity of the 

material outside the Bragg sphere. Since the fields inside the core and that outside the sphere 
are related to each other by the boundary condition, we can use the transfer matrix method 
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described in section II again. With Eq. (B4)-Eq. (B6), the coefficients in the transfer matrix Eq. 
(10) are found to be 

       
  0  ),(  ,2/)(  ,2/)()(

  0  ),(  ,2/)(  ,2/)()(

    

    

===+=
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  (B7) 

and Eq. (10) leads to 

         ( ) ( )[ ] ( ) ( )[ ]1,21,11,21,1     &    TE
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lEE MMabMMac −=−=   (B8) 

 The total radiation power is an incoherent sum of the contributions from all the multipole 
modes [28] 
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222 ),(),(2       (B9) 

and the radiation power of an oscillating dipole in the bulk core material is 

( ) 2
0

3
00

4
00 12// pcP cobulk ⋅⋅= πεωεε  3. Substituting Eq. (B3a)-(B3b) and Eq. (B8) into Eq. (B9), 

the normalized decaying rate is   
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where the vectors TETM
lmE ,

�

 are defined in Eq. (A8a)-(A8b) and the superscript TM,TE means 
summation over both TM and TE modes.  
 In the following we are going to prove Eq. (B10) is equivalent to Eq. (13a). For a pure 
multipole mode of order (l,m) described by Eq. (8a)-(8b), by integrating the poynting vector 
over all solid angle, we obtain the radiation power in the nth layer [28] 
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 When there is no gain or loss inside the cladding media, the energy flux on the inner and 
outer sides of the cladding layer should be equal to each other due to the energy conservation 
law. If the materials in the core and outside the Bragg onion sphere are the same we derive          
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 Combine above results with Eq. (10) and use the boundary condition that there is no 
incident wave from outside, i.e. 0=outB  and 0=outD , we can prove 
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for both TE and TM modes. In addition, we notice that without the presence of the cavity, Eq. 
(B1) and Eq (B6) describe the same radiation field, i.e. EE ac =  and MM ac = , then Eq (B10) 
leads to 
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 Finally, by substituting Eq. (B13b) and Eq. (B14) into Eq. (B10) we immediately find 
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which is the same as Eq. (13a).  
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