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SUMMARY

Since its establishment in 2009, single-cell RNA
sequencing (RNA-seq) has been a major driver
behind progress in biomedical research. In develop-
mental biology and stem cell studies, the ability to
profile single cells confers particular benefits.
Althoughmost studies still focus on individual tissues
or organs, the recent development of ultra-high-
throughput single-cell RNA-seq has demonstrated
potential power in characterizing more complex sys-
tems or even the entire body. However, although
multiple ultra-high-throughput single-cell RNA-seq
systems have attracted attention, no systematic
comparison of these systems has been performed.
Here, with the same cell line and bioinformatics pipe-
line, we developed directly comparable datasets for
each of three widely used droplet-based ultra-high-
throughput single-cell RNA-seq systems, inDrop,
Drop-seq, and 10X Genomics Chromium. Although
each system is capable of profiling single-cell tran-
scriptomes, their detailed comparison revealed the
distinguishing features and suitable applications for
each system.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq), which was first estab-

lished in 2009 (Tang et al., 2009), has become one of the most

powerful approaches for revealing biological heterogeneity.

The ability to manipulate picograms of RNA in single cells has

enabled the performance of studies with unprecedented tempo-

ral and spatial resolution. Based on the substantial data of the

whole transcriptome, scRNA-seq has provided comprehensive

information on landscapes of gene expression and their regula-

tory interactions at the finest resolution, enabling accurate and

precise depiction of cell types and states (Gr€un and van Oude-
naarden, 2015; Tanay and Regev, 2017; Wu et al., 2017). In the

last decade, the sensitivity and precision of mRNA quantification

through scRNA-seq have been greatly improved (Hashimshony

et al., 2016; Picelli et al., 2014), leading to revolutionary discov-

eries in many fields, such as cell type identification in various

tissues or organs (Jaitin et al., 2014; Lake et al., 2016; Papalexi

and Satija, 2018; Treutlein et al., 2014; Villani et al., 2017); tracing

cell lineage and fate commitment in embryonic development

and cell differentiation (Olsson et al., 2016; Semrau et al.,

2017; Tirosh et al., 2016; Yan et al., 2013); drawing inferences

on transcriptional dynamics and regulatory networks (Deng

et al., 2014; Dixit et al., 2016); and identifying the development,

evolution, and heterogeneity of tumors (Patel et al., 2014; Treut-

lein et al., 2014; Venteicher et al., 2017).

The experimental throughput is always a major concern in the

design of scRNA-seq experiments. In some biological systems,

such as early-stage embryos, only dozens of cells are required

to achieve critical findings (Yan et al., 2013). However, owing

to tissue complexity, the dynamicity of the cell cycle, or other

intrinsic variations (Buettner et al., 2015), as well as technical

noise (Brennecke et al., 2013), RNA-seq data from a small num-

ber of cells are typically inadequate to reflect the state of biolog-

ical samples comprehensively (Tanay and Regev, 2017). The

sensitivity of transcriptome detection is known to become

rapidly saturated with increasing sequencing depth (Svensson

et al., 2017). The shallow sequencing of massively sampled sin-

gle cells can effectively reduce random variation and define cell

types through clustering analysis, providing a more robust

approach (Pollen et al., 2014; Streets and Huang, 2014; Svens-

son et al., 2018). For large-scale scRNA-seq studies, a major

technical hurdle is the cost of preparing a large number of

cDNA libraries. Laboratory automation can overcome the labori-

ousness of this approach, but the reagents are still expensive

(Jaitin et al., 2014). A few recently reported microfluidic ap-

proaches have demonstrated various advantages in scRNA-

seq (Prakadan et al., 2017). For example, small-volume reactors

may improve reaction efficiency and reduce technical noise

when coupled with appropriate chemistry (Streets et al., 2014;

Wu et al., 2014). Moreover, lab-on-a-chip operations have also

made single-cell isolation much easier than manual cell picking
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(Shalek et al., 2014). Microwell-based scRNA-seq methods (Fan

et al., 2015; Han et al., 2018) have also exhibited advantages in

terms of low cost and high throughput. However, owing to the

lack of commercially available instruments or detailed protocols,

microwell-based scRNA-seq has not been widely adopted.

Droplet microfluidics can achieve rapid compartmentation

and encapsulation at a frequency of up to dozens of thousands

of droplets per second and be easily scaled to produce millions

of droplets, each having a nanoliter volume to accommodate sin-

gle-cell reactions (Agresti et al., 2010). The microfluidic pipeline

layout is very simple, consisting mainly of microchannels intro-

ducing or collecting reagents and samples (Duncombe et al.,

2015). This droplet strategy greatly increases the reaction

throughput and dramatically reduces the cost. Currently, there

are three prevalent droplet-based systems for high-throughput

scRNA-seq, namely, inDrop (Briggs et al., 2018; Klein et al.,

2015; Wagner et al., 2018; Zilionis et al., 2017), Drop-seq (Farrell

et al., 2018;Macosko et al., 2015), and 10XGenomics Chromium

(10X) (Zheng et al., 2017). All of these have been demonstrated

to be robust and practical in generating cDNA libraries for

thousands of cells in a single run at acceptable cost. All three

methods use similar designs to generate droplets, use on-

bead primers with barcodes to differentiate individual cells,

and apply unique molecular identifier (UMI) for bias correction

(Kivioja et al., 2011). Despite these similarities, they involve

different approaches for bead manufacturing, barcode design,

and cDNA amplification and thus have different experimental

protocols. Given these differences in system specifications

and potentially in the results of transcriptome analysis (Ziegen-

hain et al., 2017), there is a need for a systematic and unbiased

comparison among these methods.

Here, we compare the performance of these three approaches

using the same sample with a unified data processing pipeline.

We generated two to three replicates for each method using the

lymphoblastoid cell line GM12891. The mean sequencing depth

was around 50,000 reads per cell barcode. We also developed

a versatile and rapid data processing workflow and applied it for

all datasets. Cell capture efficiency, effective read proportion,

cell barcode error rate, and transcript detection sensitivity were

analyzed and compared. The results reveal strengths and weak-

nesses in each system and provide guidance for the selection of

the most appropriate system in future research.

RESULTS

System Overview
Among the three systems, inDrop and Drop-seq have been

extensively described in the literature, whereas 10X is a commer-

cial platform whose design details have not been fully disclosed.
Figure 1. Overview of the Three Platforms, Experimental Design, and D

(A) Schematic and comparison of experimental features of the three systems. T

reactions.

(B) Experimental scheme summary. Two or three replicates were performed for ea

analysis. The numbers of input and recovered cells are labeled.

(C) Overview of the data processing pipeline workflow. The sequencing reads th

plexed by their cell barcodes and then the UMIs mapped to each gene are aggr

See also Figure S1.
We here attempt to dissect these systems to the best of our abil-

ity based on the information that we could collect. In all three

systems, the cell barcodes are embedded in microbead-

tethered primers (Figure 1A). The DNA sequences of on-bead

primers share a common structure, containing a PCR handle,

cell barcode, UMI, and poly-T. The primer on the inDrop beads

also has a photo-cleavable moiety and a T7 promoter. However,

the beads are fabricatedwith differentmaterials. The beads used

in 10X and inDrop systems are made of hydrogel, and Drop-seq

uses brittle resin. Normally, beads and cells are introduced at low

concentration to reduce the chance of forming doublets; that is,

two cells or two beads are encapsulated in a single droplet.

Therefore, for Drop-seq that uses small hard beads, encapsula-

tion of one bead and one cell in the same droplet follows a double

Poisson distribution. The hydrogel beads are soft and deform-

able, closely packed in themicrofluidic channel, and their encap-

sulation can be synchronized to achieve a super-Poissonian

distribution (Figure 1A; Abate et al., 2009). Although 100% sin-

gle-bead occupancy is very difficult due to inevitable variation

in bead size, the cell capture efficiency can reach markedly

higher levels in 10X and inDrop approaches. 10X is reported to

have �80% bead occupancy and a cell capture rate of �50%

(Zheng et al., 2017).

The material of the beads may also influence the quantity and

density of DNA primers. The use of a hydrogel for 10X and inDrop

allows the immobilization of primers throughout the beads,

whereas the smaller Drop-seq beads can only carry primers on

the surface. After encapsulation, the entire beads from 10X are

dissolved to release all of the primers into the solution phase to

boost the efficiency of mRNA capture. inDrop also mobilizes

the primers by UV-irradiation-induced cleavage. In contrast,

Drop-seq uses surface-tethered primers to capture the mRNA

molecules, which could reduce the capture efficiency compared

with that for 10X and inDrop.

Reverse transcription is carried out within droplets for 10X and

inDrop before demulsification. Instead, Drop-seq only captures

the transcripts without cDNA conversion. Reverse transcription

in droplets can confer more uniform results due to the isolation

ofmany local reactions and the reduction of reaction competition.

It is also known that the performance of a reaction in a limited vol-

ume, such as a droplet, enhances the specificity of cDNA conver-

sion and relative yield (Streets et al., 2014). The three systems

adopt different strategies for cDNA amplification. inDrop employs

CEL-seq (Hashimshony et al., 2012), whereas 10X and Drop-seq

follow a template-switching protocol (Macosko et al., 2015;

Zheng et al., 2017) similar to the popular Smart-seq chemistry

(Ramsköld et al., 2012). The in vitro transcription step in inDrop

extends the library preparation time beyond 24 hr, although

both Drop-seq and 10X pipelines can be completed within a day.
ata Analysis Pipeline

hey differ in terms of barcode design, library size, emulsion, and downstream

ch platform, and the same data processing pipeline was used for downstream

at result from barcoding and tagging in reverse transcription are first demulti-

egated and counted.
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Experimental Design and Data Processing
We used GM12891, a human lymphoblastoid cell line, for our

comparative study. Biological replicates were set up for all three

systems, with various cell input numbers on different days and in

different batches (Figure 1B). We adjusted the sequencing depth

to obtain comparable numbers of reads per cell barcode across

the three systems (see STAR Methods).

Each system has its own data processing pipeline. However,

none of them can directly handle data generated by other sys-

tems due to differences in read structures. Each analysis pipeline

has to cope with system-dependent data characteristics, for

example, the tolerance of cell barcode errors. Besides, the anal-

ysis pipelines use different strategies in some key processes,

such as gene tagging. All of these differences may introduce

bias in gene quantification, which is not ideal when attempting

to perform a fair comparison among the systems. To solve this

problem, we developed a versatile pipeline that accepts data

from all of these systems and generates matrices of UMI

counts (Figure 1C). We applied this pipeline to our data and

conducted comparisons on sensitivity, precision, and bias in

an objective way.

The pipeline package is freely available online (https://github.

com/beiseq/baseqDrops) for download. It was designed to

accept paired-end sequencing data with one end (read 1) con-

taining the cell barcode and UMI and the other end (read 2) con-

taining the transcript sequence. The pipeline first identifies cell

barcodes in read 1’s raw data. After removing cell barcodes

with read counts that are too low (miscellaneous barcodes),

the pipeline corrects cell barcode errors (see STAR Methods).

These errors may have been introduced during on-bead primer

synthesis and also during PCR or sequencing steps. Reads

from the same cell barcodes are aggregated, and invalid cell

barcodes are removed after filtering by read counts. For 10X

and inDrop, in which barcodes are not completely random, the

pipeline further filters the cell barcodes based onmanufacturers’

whitelists.

Read 2 sequences are mapped to the human reference

genome (hg38) using STAR (Dobin et al., 2013) and then tagged

to the corresponding genes. We also processed the datasets

with each protocol’s official pipeline. We then compared the

obtained results with those from our versatile pipeline. The

expression levels of the majority of genes and the UMI counts

in each barcode were found to be highly consistent among the

different data processing methods (see STAR Methods; Figures

S2A and S2B). To confirm the accuracy of transforming aligned

reads to the corresponding genes, we performed simulation by

generating around 2 million reads based on the cell line’s gene

expression profile (see STAR Methods). More than 99% of the

reads (2,229,156 out of 2,251,529) were tagged to the correct

gene (see STAR Methods; Figure S2C). The remaining 1% of

ambiguous reads were mainly derived from genes with paralogs

or overlapping genes, such as RPL41/AC090498.1 or IGHA1/

IGHA2 (Table S2). After read-to-gene assignment, the reads for

each gene in each cell were grouped and their UMIs were aggre-

gated and counted by allowing a 1-bp mismatch, thus gener-

ating a gene expression UMI matrix.

The processing speed of this pipeline was optimized by

reducing the read and write payload, which is a common bottle-
4 Molecular Cell 73, 1–13, January 3, 2019
neck. For example, �50% of reads from inDrop data have an

invalid sequence structure. By removing these reads, we can in-

crease the data processing efficiency. Furthermore, the reads

are split intomultiple (typically N = 16) files, based on the cell bar-

code prefix, which enables parallel processing.

Quality of Primers on Beads
The barcode library size determines the maximum capacity for

a single experimental run using droplet-based scRNA-seq. A

small cell barcode library might result in barcode collision and

artificial doublets. In the information accompanying the three

systems, theoretical cell barcode library sizes of 1.47 3 105 (in-

Drop), 1.6 3 107 (Drop-seq), and 7.34 3 105 (10X) are claimed.

However, the effective barcode library size may be smaller than

the designed value. We estimated the proportion of effective

barcodes by analyzing the barcode collisions between multiple

runs from each system (see STARMethods). The likelihood anal-

ysis demonstrated the relative probability of observing such a

number of collisions at different effective barcode fractions (Fig-

ure 2A). For inDrop, our results suggest an effective barcode pro-

portion of around 30%, although 100% effectiveness is also

possible with smaller possibility. The analysis is less powerful

for larger libraries, but we can still try to determine the lower

bound of effective proportion for Drop-seq (�10%) and 10X

(�40%). The likelihood of an effective barcodeproportion smaller

than the lower bound is relatively low. Thus, by rough estimation,

the effective barcode size is�53 104 for inDrop and at least 13

106 for Drop-seq and 3 3 105 for 10X (see STAR Methods).

One-barcode-one-bead is the key requirement for all three

systems. However, owing to the imperfection in the chemistry

of DNA synthesis, asynchronous base addition is inevitable.

Inconsistency in the sequences of cell barcodes could thus arise

within the same bead. Such presence of errors in cell barcodes

would result in inflation of the number of detected single cells,

which requires careful correction. We aggregated the cell barc-

odes within 1 Hamming distance. For each valid cell barcode,

the proportion of the corrected reads (which contains errors in

raw barcode sequences) to the total reads after correction is

calculated as the cell barcode error rate (Figure 2B), which re-

flects the general quality of on-bead DNA primers. 10X beads

showed few mismatches in cell barcodes, indicating good qual-

ity control in bead fabrication. In contrast, more than half of the

cell barcodes contained obvious mismatches in the other two

systems. Specifically, about 10% of Drop-seq beads contained

a one-base deletion in cell barcodes, which also required extra

care during data analysis (see STAR Methods).

We further analyzed the base composition of UMI, which could

reflect its synthesis and usage bias (Figure 2C; Table S1). All sys-

tems showed bias or preference for poly-T due to its affinity to

the poly-A tail of mRNA. We also found the enrichment of poly-

C in inDrop and of poly-G in Drop-seq and 10X. Such patterns,

predominantly due to DNA synthesis bias, may cause system-

dependent skewness of the RNA-seq results.

The primary filtering criterion for valid cell barcodes is based

on the total number of raw reads, which largely reflects the abun-

dance of cellular mRNAs. A cell barcode with more reads is more

likely to originate from a real cell. The cell barcodes were sorted

and visualized by their read counts, and we observed different

https://github.com/beiseq/baseqDrops
https://github.com/beiseq/baseqDrops
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Figure 2. On-Bead Primer Library Size and Quality Assessment

(A) Estimation of effective cell barcode library size for each system. The likelihood of different effective barcode proportion is shown. The likelihood analysis is

based on the observed barcode collisions between different samples from the same system (see STAR Methods).

(B) Distribution of cell barcode error rate. The error rate was measured as the proportion of corrected reads (1-bp mismatch) relative to the total reads.

(C) The motif of the top 50 frequently used UMIs for each system.

(D) The primary estimation of the valid cell barcode numbers according to the read counts. Cell barcodes in the same sample are ordered by their read counts. The

top N cell barcodes are selected according to input cell numbers and experimental capture efficiency.

See also Table S1.
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features in the three systems (Figure 2D). For 10X, a sharp cliff

indicated the distinct difference in read counts between barco-

des from healthy cells and others. For inDrop, there was a similar

but subtler cliff. For Drop-seq, however, there was no obvious

cliff on the read-count curve for a clear cutoff. This might have

originated from the wide size distribution of beads used by

Drop-seq. We noticed that the size of beads used in inDrop or

10X was more uniform than that in Drop-seq (Figure S1), prob-

ably due to the difficulties in size control when fabricating

resin beads.

Data Processing Steps and Results
It is challenging to accurately determine the cell number, repre-

sented by cell barcodes, in each sample. This is due to the large

dispersion in cellular mRNA molecular counts and their capture

efficiency. We attemptedmultiple strategies to estimate the valid

cell numbers (see STAR Methods; Figure S3). Many of these

methods rely on certain assumptions about the reads or UMIs

distribution or cell composition, whichmight not apply for all pro-

tocols or situations.We implemented a strategy that started from

a given number of cells determined experimentally, followed by

strict quality control filtering (UMIsR 1,000 and nearest correla-
tion R 0.6). This strategy has been implemented by multiple

groups in recently reported high-throughput scRNA-seq studies.

For each run, the number of recovered cells could be roughly

estimated by considering the number of input cells, cell capture

ratio, and downstream reaction success ratio, in accordance

with system-specific protocols. Then, the estimated cells were

further filtered to satisfy the quality control criteria (see STAR

Methods).

The reads split into each valid cell barcode are first aligned to

the human genome to analyze the distribution of reads

throughout the genome (Figure 3A). Drop-seq and 10X have

about 65% of the reads mapped to UTR (mainly 30 UTR) and
exon regions, although this proportion in inDrop is only about

45%. After the tagging of reads that map to gene bodies, the

numbers of detectable genes can be obtained (Figure 3B). The

gene number drop off in 10X-1 as well as Drop-seq-2 and

Drop-seq-3 is due to small numbers of input cells. The number

of genes declines in accordance with the number of reads within

a cell, except for several outliers in Drop-seq data. We use those

detected genes to demonstrate the bias of read distribution

along the gene body (Figure 3C). The reads were mainly derived

from the 30 end of themRNA for all three systems, consistent with
Molecular Cell 73, 1–13, January 3, 2019 5
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Figure 3. Data Processing Steps and Results

(A) Read composition after mapping to the genome. Percentages of reads mapped to different genomic regions and unmapped reads are shown.

(B) The number of genes detected with cell barcode ranked by read counts.

(C) Normalized read distribution across the gene body from the 50 to the 30 end.
(D) The number of UMIs with cell barcode ranked by read counts.

(E) The distribution of cells’ nearest correlation with all other cells from the same sample (see STAR Methods); a threshold of 0.6 is applied for quality control.

(F) The number of valid cell barcodes retained after each step of quality control filtering.

(G) The proportion of effective reads after each step of quality control process (see STAR Methods).

See also Figures S2 and S3.

Please cite this article in press as: Zhang et al., Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems, Molec-
ular Cell (2018), https://doi.org/10.1016/j.molcel.2018.10.020
their library construction strategies. Drop-seq data showed a

bimodal distribution, most likely due to the same PCR anchor se-

quences being used at both ends of cDNA molecules.

We performed cell barcode filtering based on the total count of

UMIs (transcripts) in each experimental run (Figure 3D). With a
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total UMI cutoff of 1,000, most of the cell barcodes passed the

filter, which indicates that the estimated cell number is sound.

To further remove possible artifacts caused by barcode errors,

we checked the similarity of expression profiles between similar

cell barcodes. If the expression profile of a cell barcode was



5e+04
1e+05
2e+05

R
ea

ds

500

1000

2000

4000

G
en

es

1e+03

1e+04

1e+05

inD
rop

−1

inD
rop

−2

Drop
-se

q−
1

Drop
-se

q−
2

Drop
-se

q−
3

10
X−1

10
X−2

U
M

Is

Sample Cell barcodes Raw reads UMI reads Genes UMIs

inDrop-1 2,122 36,876 19,693 1,255 2,824

inDrop-2 1,636 36,338 17,509 1,241 2,645

Drop-seq-1 2,240 36,796 24,314 2,196 6,923

Drop-seq-2 1,154 36,204 24,329 2,590 8,532

Drop-seq-3 1,178 36,512 23,612 2,638 8,421

10X-1 1,558 37,136 26,796 2,996 17,026

10X-2 6,476 36,713 26,144 3,107 16,828

0.00 0.25 0.50 0.75 1.00

0

5

10

15

0

5

10

15

0

5

10

15

D
en

si
ty

Nearest correlations

 UMI counts
Using Reads

inDrop-1
inDrop-2
Drop-seq-1
Drop-seq-2
Drop-seq-3
10X-1
10X-2

C

0

1

2

3

4

1e+02 1e+03 1e+04 1e+05

inDrop−1
inDrop−2

Drop-seq−1
Drop-seq−2
Drop-seq−3
10X−1
10X−2

C
V

2

D

Average of UMIs per million

A B

Figure 4. Demonstration of the Sensitivity and Technical Noise of Each Platform

(A) Summary of cell barcode numbers, read counts, and molecular detection performance. The data are down sampled to obtain a uniform level of raw reads

across all samples (see STAR Methods).

(B) The distribution of raw reads, UMIs, and genes detected.

(C) Technical noise measured by the nearest correlation between one cell barcode and every other cell barcode within the same sample. Gene quantifications

through UMI counts (solid line) and read counts (dashed line) are both adopted.

(D) The CV-mean (CV squared) plot of each system. The technical noise is measured at the gene level.

See also Figures S4 and S5 and Tables S3 and S5.
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markedly different from its closest cell barcode neighbor (Spear-

man’s correlation % 0.6; see STAR Methods), we discarded the

barcode (Figure 3E; see STAR Methods).

Through all of these steps, we obtained various numbers of

cells in each experiment (Figure 3F). The proportion of effective

reads (reads from valid barcodes) was �75% for 10X, �25%

for inDrop, and �30% for Drop-seq (Figure 3G). The proportion

of such reads should be maximized to reduce wastage of

sequencing capacity.

Sensitivity of UMI and Gene Detection
The sensitivity of gene detection is a fundamental indicator of the

performance of scRNA-seq. It reflects the overall efficiency of a

method for capturing a single mRNA molecule for reverse tran-

scription, second-strand synthesis, and pre-amplification. It

further influences and determines the precision and accuracy

of gene expression quantification. With the same cell line as an
input sample, the sensitivity can be depicted simply with the

recovered UMIs and gene counts (Figure 4A). The UMI and

gene numbers gradually become saturated for cell barcodes

with increasing read counts (Figures S4A and S4B). We found

that the log-transformed UMI count is highly correlated (Spear-

man’s correlation r > 0.9) with the number of detected genes

(Figure S4C). This shows that sequencing depth may influence

the numbers of UMIs and genes detected. For a fair comparison

among the three different systems, we normalized the dataset

to achieve a uniform raw read level (�36K/cell) before gene

expression analysis (see STAR Methods). The technical repli-

cates from the same system showed high consistency and

reproducibility. 10X had the highest sensitivity, capturing over

17,000 transcripts from �3,000 genes on average. This perfor-

mance was consistent, regardless of the number of input cells.

Drop-seq detected �8,000 transcripts from �2,500 genes.

Meanwhile, the inDrop system had lower sensitivity, detecting
Molecular Cell 73, 1–13, January 3, 2019 7
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�2,700 UMIs from �1,250 genes. The read distribution is more

skewed in inDrop and Drop-seq, for which the majority of cell

barcodes have relatively low read counts (Figure 4B).

Technical Noise and Precision
Technical noise reflects the variation conferred by experimental

randomness, including transcript dropout in reverse transcrip-

tion and the bias associated with PCR amplification. Precision

can be assessed by the concordance of the transcriptome

among technical replicates. A major purpose of performing sin-

gle-cell RNA-seq is to cluster cells into different subgroups

based on their gene expression profiles, typically for discovering

and characterizing new cell types or states. Clustering is based

on the similarities or distances of gene expression patterns

among cells. Large technical noise or variation will distort the

actual distances and obscure subtle biological differences be-

tween cells, thus lowering the resolution of cell grouping. Many

efforts have been made to reduce the technical noise, such as

the use of UMI to eliminate the quantification error caused by

amplification bias.

Although we here use an apparently homogeneous cell line,

there is still intrinsic biological noise or heterogeneity (Prakadan

et al., 2017). In our dataset, the total variation consists of technical

and biological components, which are difficult to separate. Here,

we assume that biological noise is consistent among samples

and that technical noise dominates the variation in the datasets.

The noise levels of housekeeping genes (which show a minimal

level of biological noise) and other genes have similar distribu-

tions, which indicates the low level of biological noise compared

with technical noise (Figure S5; see STAR Methods). Thus, the

overall total variation should reflect the technical noise level.

The overall total variation is characterized as the nearest

Spearman’s correlation between a specific cell barcode and

every other cell barcode in the entire dataset (see STAR

Methods). Many clustering or classification strategies, such as

k-means and hierarchical clustering, are based on the nearest

correlation between the cells. To identify minor cell types, the

nearest correlation among these minor cells should be high to

enable their separation from other cells. To validate the effect

of UMIs in reducing the PCR amplification noise of gene count-

ing, we performed the analysis using both UMI counts and raw

read counts for the quantification of gene expression. The results

(Figure 4C) show that 10X and Drop-seq have lower technical

noise levels than inDrop. For all three systems, gene expression

profiles characterizedbyUMI have reduced noise comparedwith

those using raw counts, confirming the effectiveness of UMI in

noise reduction. It is noteworthy that such noise is more severe

in inDrop data, probably due to the use of random primers during

library construction. For 10X, however, the usageofUMIdoes not

dramatically reduce noise. This is probably due to relatively even

amplification during 10X sample preparation. In addition, most

UMIs were sequenced only two to three times, suggesting a

less saturated sequencing depth. For deeper sequencing, the

use of UMI can probably reduce the noise further.

The technical variation at the gene level can be measured by

the coefficient of variation (CV) of normalized UMI (UMIs per

million) counts across all cells (Figure 4D; see STAR Methods).

This provides a view of the technical noise on the whole gene
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expression profile. All systems show reduced variation for genes

with higher expression levels. Generally, 10X has the lowest

technical noise, followed by Drop-seq and then inDrop. Interest-

ingly, many of the most highly expressed genes are quite noisy,

especially in the 10X data. We examined these genes (normal-

ized UMI R 2,000; CV R 0.5) and found that most of them

were the cell line’s most highly expressed genes or mitochon-

drial genes (Table S3). High noise in these genes was probably

introduced by the stochastic manner of bursts by which tran-

scription occurs (Sanchez and Golding, 2013).

Saturation of Sensitivity and Precision at Low
Sequencing Depth
The ability to detect transcripts present at a low level could be

enhanced by performing deeper sequencing. However, there is

a trade-off between costs and sensitivity, especially for high-

throughput experiments. Empirically, it has been shown that

each cell gets 10,000–100,000 reads in high-throughput

scRNA-seq experiments, whereas for conventional scRNA-seq

data, the corresponding value is usually �1 million reads per

cell (Baran-Gale et al., 2018). A previous study based on a math-

ematical model suggested that shallow sequencing (1% of con-

ventional depth) can also be informative regarding cell status

(Heimberg et al., 2016). We randomly subsampled sequencing

data and analyzed the corresponding changes in sensitivity

and precision (Figures 5A, 5B, and S6). The fitted saturation

curves of UMI and gene counts help to determine a suitable

sequencing depth for most applications.

All of the systems show diminishing returns at higher depths.

Formore sensitivemethods, it is possible to detect the same level

of UMIswith fewer reads. All threemethods can reach a threshold

of 1,000 UMIs with fewer than 10K reads. 10X can detect

10,000 UMIs with about 20K reads as a median, although for

Drop-seq, the value is 50K. These both exceed the capacity of in-

Drop. We also evaluated how many reads per cell are needed to

reach 80% of the total saturated UMIs for Drop-seq (�80K) and

inDrop (�60K; Figure S6A). In contrast, 10X requires �200K

reads/cell to accomplish this due to the higher sensitivity. Detec-

tion sensitivity of gene numbers saturated faster. To reach the

80% saturation level, �30K reads/cell are needed for inDrop or

Drop-seq,while�80K reads/cell are needed for 10X (FigureS6B).

Other than sensitivity, precision also determines a system’s

resolution for making biological discoveries. Here, the precision

is measured as the nearest correlation between one cell and

the others, which also indicates the level of technical noise.

We investigated how the precision level was affected by the

sequencing depth and found that the precision index rapidly

saturated with increasing read depth (R20,000 effective reads)

for all three systems (Figure 5C).

These results help us to establish appropriate empirical guide-

lines for experimental design. For themost commonly performed

tasks, such as cell typing, a median number of 20,000 reads/cell

should be sufficient. However, it should be noted that these re-

sults are from a cell line with abundant mRNA. The desired

sequencing depth should be considered based on both the

sensitivity of protocols and the input RNA content. For cells

with lower transcription activities, such as primary cells, a lower

level of sequencing depth could be sufficient for each protocol.
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Figure 5. Transcriptome Analysis Sensitivity

and Noise Level at Different Sequencing

Depths by Subsampling Analysis

(A and B) Median numbers of UMIs (A) and genes

(B) detected for each sample with increasing

effective read counts.

(C) Transcriptome analysis noise level saturates

quickly with sequencing depth. The noise was

measured as the nearest correlation (see STAR

Methods).

See also Figure S6.
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Bias in Gene Quantification
To comprehensively compare the transcriptomes depicted by

different systems, we conducted dimension reduction with prin-

cipal-component analysis (PCA) and t-distributed stochastic

neighbor embedding (tSNE) analyses (Figure 6A). Almost all of

the cells were robustly separated and clustered according to

their system of origin. Although there is biological and technical

variation within cells from the same run, which results in great di-

versity in sequencing reads, and in gene and UMI counts, the

bias between different systems still exceeds the level of these

variations. As the replicates are processed in different batches

and days, the batch effect is also obscure. Within the same

system, different batches of data show a very homogeneous

distribution (Figure S7).

The separation of cells by system indicates that there is

system-specific quantification bias at the gene level. Potential

biases in themRNA enrichment at the gene level could be related

to three major factors: expression abundance (normalized to

UMIs per million); gene length; and GC content. We hence

selected the top 100 marker genes (see STAR Methods) from

each method and analyzed the distribution of these factors (Fig-

ures 6B–6D). These genes showed consistent expression inten-

sity among biological replicates. We found that, compared with

the other systems, 10X slightly favored shorter genes and genes

with higher GC content, whereas Drop-seq better detected

genes with lower GC content. This observation echoes a

previous report describing that Drop-seq overestimates tran-

scription of genes with low GC ratio or long sequence (Macosko

et al., 2015).

In summary, all of the methods appear to be very consistent

and homogeneous among technical replicates from different

batches. This indicates the validity of combining different data-
sets together from the same method.

However, different protocols have obvious

bias related to gene length and GC con-

tent. Thus, combining these datasets di-

rectly will introduce extra divergence.

DISCUSSION

We have compared the three most widely

used droplet-based high-throughput sin-

gle-cell RNA-seq systems, inDrop, Drop-

seq, and 10X, using the same cell sample

and a unified data processing pipeline to
reduce bias in experimental design and data analyses. Technical

replicates were included to identify possible batch-dependent

artifacts. For each system, we sequenced thousands of single

cells. Through quantitative analysis of a few key parameters us-

ing our unified data processing pipeline, we have clarified the

characteristics of each system. Generally, after filtering out arti-

facts and errors, all three systems produced quality data for

single-cell expression profiling. The cell typing analysis indicated

obscure batch effects but noticeable clustering bias in associa-

tion with the system of choice. This indicates that cell typing

analysis using datasets from a mixture of systems is technically

challenging and should be avoided.

In this study, we chose a lymphoblastoid cell line for the anal-

ysis because cell line quality is highly controllable. At least for

technical evaluation, we wished to reduce the variation of

sample quality on the obtained results as much as possible.

However, direct comparisons using primary cells, especially

those with low mRNA contents, would be more informative. To

expand the scope of our study, we further processed HEK293

cells with 10X system and included some datasets produced

by the original developers of the three systems (Klein et al.,

2015; Macosko et al., 2015; Zheng et al., 2017). As summarized

in Table S5, 10X demonstrates higher sensitivity, detecting

roughly twice as many of UMIs as inDrop and Drop-seq do

from various kinds of cell. The results from the inDrop developers

are better than ours. We attribute this discrepancy to batch-to-

batch variation in bead quality. As we showed above, inDrop

cell barcode error rate is much higher than those of Drop-seq

and 10X (Figure 2B). Being labeled with defective barcodes

would deem the transcripts undetectable since the very

beginning. More than half of inDrop sequencing data were

wasted due to a failure of matching with the cell barcodes in
Molecular Cell 73, 1–13, January 3, 2019 9
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Figure 6. Transcriptome Analysis Bias in the Three Systems

(A and B) Visualization of cell barcodes of all three systems clustered by PCA (A) and tSNE (B).

(B–D) Demonstration of transcriptome analysis bias in aspect of gene expression level (B), gene length (C), and GC content (D). The top 100 marker genes from

each system were used for demonstration. The distributions of all genes (in gray color) are also shown for comparision.

See also Figure S7.
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our data. Feedback from other inDrop users showed that the

equivalent proportions from different batches of beads range

from 25% to 65% (unpublished data). We also tested the

impact of mRNA content on system performance. When

using half of HEK293 cDNA for downstream library preparation,

we detected roughly half UMI as in normal HEK293 (Table S5).

All these abovementioned results suggest that our findings

based on the lymphoblastoid cell line can be generalized to other

cell types.

For all three systems, the beads are specifically provided by

the particular manufacturer and would probably be difficult to

produce in small laboratories. Thus, the quality of the beads,

such as their size dispersity, is particularly important to define

the robustness and uniformity of reverse transcription and

further reactions. Moreover, the fidelity and purity of the barcode

sequences on each bead are also key factors affecting the

bioinformatics pipeline, for which artifacts and errors should

be minimized.

Our comparison shows that 10X generally has higher molecu-

lar sensitivity and precision and less technical noise. As a more

maturely commercialized system, the 10X protocol should

have been extensively optimized, which is partially reflected in

the barcode design and quality control of bead manufacture.

However, high-performance optimization also comes with a

high price tag. Specifically, the instrument costs more than

$50,000 and the per-cell cost is around $0.50, even without

considering the sequencing cost or instrument depreciation

(Table S6).

With small compromises in sensitivity and precision, Drop-seq

exhibits a significant advantage in experimental cost compared

with 10X, which is typically the major concern when a large num-

ber of single cells are needed. As an open-source system
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(except for the beads), Drop-seq has gained popularity since

its introduction in 2015. As of the time of writing, the Drop-seq

protocol has been downloaded nearly 60,000 times. Building

up the whole system costs less than $30,000. The experimental

cost of Drop-seq is about $0.10 per cell (Table S6). Drop-seq is

thus a reasonable choice for individual labs, given its balanced

performance and economical nature.

To a certain extent, inDrop can be considered an open-source

version of 10X. Both of them use hydrogel beads for super-

Poissonian loading. Their on-bead primers are both releasable

to facilitate the capture of transcripts. The instrument cost is

comparable to that of 10X, and the per-cell cost is about half

that of 10X (Table S6). We attribute the lower performance of in-

Drop to its excessive cDNA amplification (Hashimshony et al.,

2016), as well as the fact that the protocol has yet to be

completely optimized. As an open-source system, inDrop can

adopt other chemistries and be easilymodified for different types

of RNA-seq protocols. In a preliminary experiment, we tested the

implementation of Smart-seq2, the most widely used scRNA-

seq protocol, on the inDrop system. The cDNA profile closely

resembled conventional Smart-seq2 products (Figure 7A). We

further tested different conditions for reverse transcription and

cDNA amplification. Similar to the results generated by the offi-

cial protocol, a significant proportion (�40%) of reads in the

new data could not be assigned to genuine cell barcodes. Our

briefly optimized protocol generated results for UMI and gene

detection comparable to those with the official protocol (Figures

7B–7D; Table S4). Although the sensitivity of transcription detec-

tion was still lower than in the other two systems, our preliminary

results demonstrated the flexibility of inDrop and that the

system could be desirable for nonstandard approaches or tech-

nical development.
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Figure 7. Adopting the Smart-seq2 Protocol in the inDrop Platform

(A) Comparison of cDNA fragment size between Smart-seq2 performed in tube and inDrop platform.

(B and C) Four kinds of reaction with different reaction temperatures and PCR amplification strategies were performed (S1, S2, L1, and L2, see STAR Methods).

Their median detected UMI (B) and gene (C) counts at various sequencing depths are shown.

(D) The UMI distributions for four conditions at uniform sequencing depth (100K reads). The L1 condition has better sensitivity.

See also Table S4.
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With all of the system-specific features mentioned above, we

proposed guidance to facilitate the choice of a suitable droplet-

based scRNA-seq system for ultra-high-throughput single-cell

studies. Although most projects work with relatively large cell

numbers, precious samples, such as human embryos, require

efficient cell capture. A super-Poissonian distribution of cell cap-

ture could be essential for such samples. The requirements

regarding the experimental cost and efficiency of transcript

detection depend on the specific scenario. Generally, all three

systems offer satisfactory transcript detection efficiency, and

higher efficiency is associated with higher experimental cost.

By rule of thumb, 10X is currently a safe choice for most applica-

tions. When the sample is abundant, Drop-seq could be more

cost efficient. In contrast, when the detection of low-abundance

transcripts is optional, or a custom protocol is desired, inDrop

becomes a better choice.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Drop-seq beads Chemgenes Barcoded

Bead SeqB

Cat#MACOSKO-2011-10

INDROP SINGLE-CELL RNA SEQ KIT 1cellbio, Inc N/A

Chromium Single Cell 30 Library & Gel Bead Kit v2 10X Genomics Cat#PN-120237

Deposited Data

Raw data from Drop-seq original paper NCBI GEO GEO: GSE63472

Raw data from inDrop original paper NCBI GEO GEO: GSE65525.

Raw data from 10X original paper 10Xgenomics https://support.10xgenomics.com/single-cell-

gene-expression/datasets

Raw and processed dataset This paper GEO: GSE111912

Experimental Models: Cell Lines

GM12891 cell line Coriell Institute N/A

Software and Algorithms

R R Core Team http://www.R-project.org

Seurat Rahul Satija https://satijalab.org/seurat/

STAR Alexander Dobin https://github.com/alexdobin/STAR

baseqDrops This paper https://github.com/beiseq/baseqDrops

Samtools Li and Durbin, 2009 http://samtools.sourceforge.net/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jianbin

Wang (jianbinwang@tsinghua.edu.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
The GM12891 cell line (Male) was purchased from the Coriell Institute. The complete growth medium was made using RPMI-1640

medium with L-glutamine (cat. No.11875-085; Life Technologies), 10% fetal bovine serum (cat. No. 16000-044; Life Technologies),

and 1% penicillin and streptomycin. The cell line was incubated with 5% carbon dioxide at 37�C in a culture flask.

METHOD DETAILS

Cell lines and cell preparation
The GM12891 cell line was purchased from the Coriell Institute. The complete growth medium was made using RPMI-1640 medium

with L-glutamine (cat. No.11875-085; Life Technologies), 10% fetal bovine serum (cat. No. 16000-044; Life Technologies), and 1%

penicillin and streptomycin. The cell line was incubated with 5% carbon dioxide at 37�C in a culture flask. The cell concentration

was maintained between 5x105 and 1 3 106 cells/mL. Before the experiment, the general cell condition was confirmed under a

microscope. Regular circular cells and some cell aggregates indicate a good cell state. Cells were collected by centrifugation at

150 g for 5 min and subsequently counted with a hemocytometer.

Drop-seq experiment
Cells were washed with PBS-BSA three times and filtered with a 40-mm cell drainer. We then counted the cells and adjusted the

concentration to 100 cells/mL. All subsequent steps were carried out as detailed online by Macosko et al. (http://mccarrolllab.org/

dropseq/). Briefly, we loaded droplet-making oil, cells in PBS-BSA, and barcoded beads (cat. No. MACOSKO-2011-10;

Chemgenes Barcoded Bead SeqB) in lysis buffer into the droplet, generating a microfluidic device. Cells were lysed in the droplets

to releasemRNA. Beads capturedmRNAs in the droplets. After demulsification, beads were pooled together. We conducted reverse

Cellranger 10XGenomics https://github.com/10XGenomics/cellranger
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transcription and ExoI digestion. Two thousand beads (or 100 STAMPs) were aliquoted into one PCR tube for PCR amplification. PCR

products were pooled together and purified using AMPure XP Beads. We further constructed libraries and performed sequencing on

an Illumina HiSeq 4000 with custom Drop-seq read 1 primer.

inDrop experiment
We purchased the inDrop instrument and hydrogel beads from 1CellBio. We performed all steps in accordance with the

manufacturer’s protocol: Silanization Protocol v4.0 (https://1cell-bio.com/wp-content/uploads/2017/10/Silanization-Protocol-v4.

pdf), inDrop Single-Cell Reverse Transcription Protocol v2.1 (https://1cell-bio.com/wp-content/uploads/2017/11/inDrop-Single-

Cell-Encapsulation-and-Reverse-Transcription-Protocol-Version-2.1.pdf), and inDrop Library Preparation Protocol v1.2 (https://

1cell-bio.com/wp-content/uploads/2017/03/InDrop_LibraryPrep_Protocol_v1.2.pdf). In short, we silanized the microfluidic chip

and pre-processed the hydrogel beads before each experiment. The droplet-making oil, cell resuspension, and RT/lysis buffer

were loaded into the chip for the generation of droplets. The emulsion was collected in a tube on ice and irradiated by UV light to

release primers. Reverse transcription proceeded in the droplets. After demulsification, hydrogel beadswere filtered. The RT product

was digested by ExoI/HinfI and purified using AMPure XP beads. Second-strand cDNA was synthesized using NEB second-strand

synthesis kit. After IVT, the RNA product was fragmented and reverse-transcribed via random primers. The product was purified

by AMPure XP Beads and quantified by qPCR. We further constructed libraries and performed sequencing on an Illumina

HiSeq 4000.

10X system experiment
We performed all steps following the 10X protocol. We used the Chromium Single Cell 30 Library & Gel Bead Kit v2 (10X Genomics).

In short, all samples and reagents were prepared and loaded into the chip. Then, we ran the Chromium Controller for droplet gen-

eration. Reverse transcription was conducted in the droplets. We recovered cDNA through demulsification and bead purification.

Pre-amplified cDNA was further subjected to library preparation. Libraries were sequenced on an Illumina Hiseq 4000.

Calculation of cell capture efficiency
The number of cells loaded into each system was counted as described above. The number of captured cells was determined using

the number of cell barcodes passing the quality threshold (total UMIs R 1,000, nearest correlation R 0.6).

Cell barcodes and UMI assignment
For 10X, we obtained the cell barcode and UMI from each read pair by extracting the first 16 bp and the following 8 bp from read

1 sequences. In a similar way, the barcodes of Drop-seq can be accessed. inDrop’s barcode design is more complicated as the

full cell barcode contains two parts (named CB1 and CB2), which are separated by a 22-bp spacer sequence called W1. The length

of CB1 ranges from 8 to 12 bp. We first located the W1 sequence by tolerating up to two mismatches. Then, we could determine the

length of CB1 and the whole cell barcode sequence. We aggregated the retrieved cell barcodes and exported the count data for

downstream analysis. For 10X and inDrop, the barcodes were further filtered by requiring their presence in the barcode whitelist

in the associated protocols.

Analysis of effective cell barcode library size
The effective barcode library was estimated by comparing and counting the common barcodes between datasets from multiple ex-

periments. It is possible to estimate the barcode library size from a single experiment in theory, by using a Poisson distributionmodel.

However, it requires a precise number of input cells which is practically impossible to obtain. We therefore employed pairwise anal-

ysis. We hypothesized that the effective or real barcode library is a subset of the designed whole library and is consistent across

different experiments. In each sample, the detected cell barcodes are randomly sampled from the effective library (without replace-

ment); by chance, there should be some barcodes that recur inmore than one sample, which are namedbarcode collisions. The num-

ber of collisions between two samples with given numbers of detected cells is mainly determined by and reflects the actual barcode

library size.

The ideal number of collisions between samples under claimed library size are estimated by running simulations for multiple times

(10000). For each simulation, we sampled (without replacement) given number of cell barcodes according to cell number in two sam-

ples from a pool of barcodes of the claimed library size, respectively. The mean number of recurred barcodes between two samples

in all simulations are used as estimated collision number. For inDrop, the estimated collision number is 28, but observation revealed

92 of them. For Drop-seq, which has three samples, the barcodes of Drop-seq-3 and Drop-seq-2 are combined. The observed value

is zero, while the simulation reported an mean of 0.3. For 10X, by simulation, the mean number of collisions is 13.7 upon sampling

1560 and 6478 cell barcodes from a library of 734,000 cell barcodes. The observed collision number is 22.

We further calculated the likelihood of detecting such number of collisions under a series of effective library sizes (ranging from 5%

to 100% of the claimed size, at intervals of 5%). For each assumed library size, 10,000 random samplings were conducted using the

number of cell barcodes in two experiments under such a library size. The proportion of observations of all simulation results that

reported the same number of collisions as in our experiment is referred to as the likelihood of the corresponding library size. The likeli-

hood analysis helps to indicate the probability of the actual library size based on our experimental observations.
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Barcode correction
Ideally, the cell barcode sequences on the same beads should be the same. However, owing to errors in DNA synthesis, there are

mismatches or even deletions in the cell barcode sequences. These errors will cause the sequencing reads from the same cell to

be spliced into other barcodes, which would inflate the cell number. We adopt a relatively simple method to correct all kinds of

errors. Specifically, the raw barcodes are sorted by abundance, and cell barcodes within 1-bp mismatch are aggregated into the

consensus barcode with higher read counts. After the aggregation, each cell barcode consists of the original reads and corrected

(but containing barcode errors) reads. The proportion of the corrected reads relative to the total reads for each barcode is

calculated and defined as the cell barcode error rate. The error rate of cell barcodes with more than 20K reads is used for the

statistical analysis.

Determination of valid cell barcodes
The number of cell barcodes after correction greatly exceeds the number of input cells, which is named as ‘‘barcode inflation.’’

Most of these cell barcodes are derived from droplets with beads but no cells. We assume that a valid cell barcode from a

high-quality cell should have sufficient mRNA molecules and higher read counts. There are multiple ways to infer the valid cell

barcodes with the read count data. We adopt multiple strategies to determine the cell numbers (Figure S3). We first obtain a rough

estimate of the captured cell numbers by considering the cell inputs, cell capture ratio, and other factors (referred to as Estimated).

The numbers of cells with more than 20K and 40K reads are also determined (referred to as Reads R 20/40K). We also followed

the method used in the of 10X’s pipeline (Cell Ranger), which set a threshold for UMIs of cells. The hypothesis is that the top 1% of

cells contains about 10 times as many UMIs as a typical cell. The resulting estimated cell number is referred to as the UMI (1/10).

We also observed a distinct knee point on a plot of log-transformed barcode rank and barcode reads (Figure 2D). We generated

the derivation of the plot of log-transformed barcode rank and barcode reads (Figure S3A) for 10X samples, and observed a sharp

cliff around the estimated cell numbers. However, this phenomenon is subtler or absent for inDrop and Drop-seq samples,

respectively.

The methods discussed above are all based on certain hypotheses or assumptions that may not apply for all methods and cell

compositions. Here, we determine the actual number of cells in each sample by quality control and filtering of the number of cells

by rough estimation based on experimental information. The valid cells are required to have at least 1,000 UMIs and the nearest cor-

relation should exceed 0.6 (see Methods below).

Alignment and tagging reads to genes
The reads are aligned to a reference genome (GRCh38) using STAR, a high-performance aligner for RNA-seq data (Dobin et al.,

2013). Most of the reads can be uniquely mapped and the reads can be tagged according to the annotation. A read is required to

have at least 50% of its length mapped and overlapping with an exon region. For multiple aligned reads, the reads should be

from the same gene to be counted.

UMI corrections
The UMIs could also be influenced by sequencing errors. In our process, the UMIs in the same gene from the same cell barcode are

sorted by their counts. UMIs within 1 Hamming distance are aggregated. We observed that, for some highly expressed genes with

hundreds to thousands of UMIs, the amount of time required for UMI correction may increase exponentially. We disabled the correc-

tion for those genes with UMI counts larger than 100 by default.

Comparison with protocols’ official analysis pipeline
The official analysis pipeline was downloaded and performed under their instructions, respectively. We combined the UMI table for

around 100 cell barcodes for the official pipeline and our versatile pipeline (Figure S2A). The gene expression levels were compared

between the two analyses. We also calculated and compared the total numbers of UMIs for each cell barcode with the two pipelines

(Figure S2B).

Distribution of reads on the gene structures
Picard Tools (http://broadinstitute.github.io/picard/) and its RNASeqMetrics command were used to analyze the distribution of map-

ped reads on the genome and gene bodies. The gene structure annotation for GRCh38 was downloaded in refFlat format from the

UCSC genome browser. The following regions were counted: coding, UTRs, intronic, and intergenic regions.

Quality control and filtering of cells
The UMI counts reflect the molecular diversity of the transcriptome. We evaluated the base contents and numbers of UMIs for all

cells. The qualified cell barcodes should contain more than 1,000 UMIs. We further generated a Spearman’s correlation matrix for

all valid cell barcodes using their UMI counts of the top 500 genes. Then, we obtained the nearest neighbor for each cell barcode

and calculated the maximum pairwise correlation. These values revealed outliers, so cell barcodes with nearest correlation < 0.6

were removed.
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Proportion of effective reads
The estimated barcode reads counts reads from all estimated barcodes before filtering, and the reads mapped to genome are called

as mappable reads. The UMI-effective reads counts reads that are mapped to gene body regions which contribute to molecular

counting. The remaining reads are further filtered by two quality control filtering.

Technical noise analysis
The nearest correlation analysis was performed by calculating Spearman’s correlation coefficients for all valid pairwise barcodes. To

evaluate the technical noise at the gene level, we randomly selected 500 cells from each sample with their top 1000 highly expressed

genes. To adjust for the differences in molecular number and capture efficiency, the UMIs were normalized by multiplication by a

factor that made the sum of normalized UMI counts equal 1,000,000 for each cell (UMIs per million).

Technical noise of housekeeping genes
The list of housekeeping genes (HK genes) was downloaded from https://www.tau.ac.il/�elieis/HKG/. The housekeeping genes and

nonhousekeeping genes (non-HK genes) were labeled with different colors to depict their distribution regarding the overall noise

level. The HK genes were associated with the lowest amount of biological noise and their overall noise level could be approximately

treated as the technical noise. The similarity of the distributions between HK and non-HK genes showed that the biological noise level

was notably below the technical noise level.

Sequencing depth subsampling and normalization
To ensure a fair comparison of the performances of the three protocols without concern for their different sequencing depths, we

conducted subsampling analysis. We subsampled the raw sequencing reads for raw sequencing depths from 10% to 90% at

intervals of 5%. The resulting data were then subjected to the same processing pipeline as described above. We obtained the

corresponding cell barcodes, median raw sequencing depth, UMIs, and genes at each sequencing depth. As Drop-Seq-1 was

sequenced at a relatively low sequencing depth (�37K reads), we selected the subsampling ratio for each sample to make the

median sequencing depth (raw reads) approach 37,000.

Smart-seq2 protocol in inDrop system
We tested the Smart-seq2-based protocol on the inDrop platform. In the droplet generation step, SuperScript III was replaced by

SuperScript II (10 mL/100 mL RT inlet) and 2 mL of 100 mM Template Switch Oligo (TSO, AAGCAGTGGTATCAACGCAGAGTA

CATrGrGrG) was also added to 100 mL of RT inlet. At the reverse transcription step, two strategies were tested. One involved

exposure to 42�C for 1.5 h (42�C RT) and the other involved 42�C for 1.5 h followed by 50�C for 2 min and 42�C for 2 min for 10 cycles

(42/50�C RT). After reverse transcription, demulsification was performed the same as with the standard inDrop protocol. The

aqueous phase was purified using 0.6 3 AMPure beads. At the cDNA amplification step, two strategies were tested. One involved

all of the cDNA being pooled together for amplification (Pool PCR) and the other involved splitting cDNA into tubes with about

200 recovered cells per tube and pooling together after amplification (Split PCR).

Comparison of public datasets of the three systems
We collected multiple datasets by these three systems preferential from the original published papers. For datasets without the pro-

vision of raw sequencing read files, we used the processed UMI expression tables downloaded from Gene Expression Omnibus

(GEO). The raw sequencing files were subsampled to obtain a relatively uniform sequencing depth (about 30K reads per cell). We

also included a HEK293 sample by 10X prepared in our own laboratory. The cDNAs after demulsification was split into two halves

for downstream reactions. So for each barcode, it contains about half the amount of a normal HEK293 cell. We obtain the raw files

(Fastq/SRA) of the following datasets: mouse ES cells by inDrop (Klein et al., 2015), brain cells by 10X, pan T cells by 10X, HEK293 by

Drop-seq (Macosko et al., 2015) and 10X. These datasets were reanalyzed using our own developed pipeline to obtain digital expres-

sion matrices. To identify valid cell barcodes, all datasets were filtered using standard of UMIs > 1000. The unavailable values are

labeled by ‘‘NA.’’

The same kind of cells makes a more fair comparison among the systems. Datasets of zebrafish from similar stage exist for all

systems. inDrop and 10X can be compared by the pan T cell or T regulatory cells. Drop-seq and 10X can be compared using their

HEK293 datasets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing depth fitting and prediction
When samples are sequenced at different depths, it interferes with the comparison between samples and methods. Thus, we

randomly subsampled the raw reads to different sequencing depths (from 10% to 90%, at intervals of 10%) and measured their per-

formance. The numbers of detected UMIs and genes, and the precision level index for each depth were calculated as described

above. The fitting and prediction of the saturation level of genes and UMIs were performed using the following equation.
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y = a+
b

x + c

PCA and tSNE analysis
We use the Seruat package (https://satijalab.org/seurat/) (Butler et al., 2018)for PCA and tSNE analysis. We randomly selected

500 cells from each sample for efficiency. The pipeline proceeds through the cell and gene filtering, data normalization, and identi-

fication of the most variable genes. The pipeline also reports the marker genes for each sample which are higher expressed

compared to other samples. We generated the top 100 marker genes for each sample and these genes are aggregated according

to their systems. The length and GC content for each gene are calculated by averaging the value from all of the corresponding

transcripts.

DATA AND SOFTWARE AVAILABILITY

The accession number for the data reported in this paper is GEO:GSE111912. The data processing pipeline (baseqDrops) is available

at github (https://github.com/beiseq/baseqDrops).
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Figure S1 (Related to Figures 1 and 7). The size distribution of Drop-seq and 

inDrop beads. Bright-field microscopic images of Drop-seq beads (A) and inDrop 

beads (B) under different magnifications. (C) The bead diameter was measured 

through image processing and the density distribution of the bead diameter was 

plotted for inDrop, Drop-seq, and 10X. The mean and coefficient of variation (CV) 

of bead diameter are indicated. (D) The UMI distribution of all samples followed a 

unimodal distribution. (E) The UMI distribution of the four Smart-seq2 inDrop 

samples. The sample names and their corresponding conditions are shown in 

Figure 7. 

  



 
Figure S2 (Related to Figure 3). Validity of the data processing pipeline. (A) We 

compared the aggregated gene expression level (log10-transformed) of approximately 100 

cells between the official analysis pipeline and our pipeline. (B) The total numbers of UMIs 

(log10-transformed) in each cell quantified by the official pipeline and our pipeline show 

high consistency. (C) Comparing the actual number of UMIs and that estimated by our 

pipeline using simulation data.  

  



 

 

 

Figure S3 (Related to Figure 3). Determining the valid cell numbers. (A) The derivation 

of the plot of barcode rank vs. read count; a cliff can be seen around the estimated cell 

numbers. This corresponds to a knee point in the plot of barcode rank vs. read count. The 

cell numbers estimated by this method (referred to as the read knee point method) are 

labeled by a dashed line (B) The numbers of cells estimated by different methods (see 

Methods). Here, the term “estimated” indicates that the number is obtained by considering 

all experimental evidence. UMI (1/10) means that the lower level of UMI is set as 1/10th of 

the level of the top 1% of barcodes. Reads ≥20K or 40K will require the corresponding 

minimal number of reads. 

  



 

 

Figure S4 (Related to Figure 4). Pair-wise relationship between the measurements of 

gene expression sensitivity and precision in all cells from the same sample. (A) Gene 

number vs. read count. (B) UMI count vs. read count. (C) Gene number vs. UMI count. 

  



 

 

 

Figure S5 (Related to Figure 4). Technical and biological noise level of each method. 

The housekeeping and nonhousekeeping genes are labeled with different colors. The 

similarity of their distributions indicates that the level of technical noise overwhelms the 

biological noise. 

  



 
Figure S6 (Related to Figure 5). Sequencing depth saturation analysis. UMIs (A) and 

genes (B) detection ratio at each subsampled sequencing depth are plotted. The 

subsampling depth is measured as the median number of reads of all valid cells in a sample. 

The curve is fitted, and the saturation level is predicted. The detection ratio is normalized to 

the saturation level of UMI or gene numbers in each sample (see Methods). 

  



 

Figure S7 (Related to Figure 6). Clustering of cells from samples with the same system 

using PCA and tSNE analyses. The systems are inDrop (A, B), Drop-seq (C, D), and 10X 

(E, F). The dimension reduction methods are PCA (A, C, E) and tSNE (B, D, F). 



Table S1 (Related to Figure 2). The top 20 detected UMI sequences in each system.  

 

inDrop   Drop-seq   10X 

UMI Sequence Depth   UMI Sequence Depth   UMI Sequence Depth 

CCCCCC 20  TTTTTTTT 36.6  TTTTTTTTTT 44.8 

CCCCCT 9.7  GGGGGGGG 17.9  GTTTTTTTTT 14.7 

CCCCCA 7.9  CTTTTTTT 13.1  ATTTTTTTTT 14.7 

TTTTTT 7.1  AGGGGGGG 11.7  CTTTTTTTTT 12 

GCCCCC 6.8  GAGGGGGG 11.3  GGTTTTTTTT 9.2 

ACCCCC 6.8  GGGGGGGT 10.7  TATTTTTTTT 7.2 

CCCCCG 6.5  CGGGGGGG 10.5  AATTTTTTTT 7.1 

CCCCTT 6.1  ATTTTTTT 10.4  GCTTTTTTTT 7 

ATTTTT 6.1  GGAGGGGG 10.2  GATTTTTTTT 6.9 

CCGCCC 6  TGGGGGGG 10.1  TGTTTTTTTT 6.8 

AATTTT 5.8  GGGGGAGG 10  AGTTTTTTTT 6.6 

CCCGCC 5.7  GTTTTTTT 10  CATTTTTTTT 6.4 

CCCACC 5.6  GGGGGGGA 10  TCTTTTTTTT 6.2 

CGCCCC 5.5  GGGAGGGG 9.9  ACTTTTTTTT 5.9 

CCACCC 5.4  GGGGAGGG 9.3  CGTTTTTTTT 5.8 

AAATTT 5.4  GTGGGGGG 8.7  CCTTTTTTTT 5.4 

CACCCC 5.3  GGGGGGAG 8.7  GGATTTTTTT 5.2 

CCCCAC 5.3  TCTTTTTT 8.7  GTATTTTTTT 4.9 

CCCTCC 5.2  CCTTTTTT 8.6  AGGTTTTTTT 4.7 

AAAAAA 5.1   AAGGGGGG 8.6   GGCTTTTTTT 4.7 

 

The normalized depth is calculated as demonstrated in Method. 

 

 

 

  



Table S2 (related to STAR methods). The mislabeled genes in read-to-gene tagging 

simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mislabeled genes in read-to-gene tagging simulation (see Methods). Most of these genes 

overlap in the genome or have similar sequences.  

Real gene Mislabeled as 

RPL41 AC090498.1 

IGHA1 IGHA2 

RPS15A RP11-1035H13.3 

IGLC3 IGLC2 

MIF AP000350.10 

RPL36A RPL36A-HNRNPH2 

IFITM1 IFITM2 

ARPC1B ARPC1A 

C20orf24 TGIF2-C20orf24 

TUBA1B TUBA1C 

RPL36 HSD11B1L 

PSMA1 NA 

FKBP1A FKBP1C 

NDUFA11 AC024592.12 

AC090498.1 RPL41 

PA2G4 RP11-603J24.9 

HNRNPA1 HNRNPA1L2 

HNRNPA1L2 HNRNPA1 

VAMP2 RP11-599B13.6 

NDUFB8 RP11-411B6.6 

FKBP11 AC073610.5 

NDUFB8 NA 

TMSB4X NA 

TUBA1B TUBA1A 



Table S3 (related to Figure 4). The highly variable genes from each system. The genes are 

ranked by the coefficient of variance (CV). The criteria of filtering are shown in Methods.  

 

10X  Drop-seq  inDrop 

Gene   CV Mean_Norm_UMI  Gene   CV Mean_Norm_UMI  Gene   CV Mean_Norm_UMI 

IGLC3 2.551  2264.403   HIST1H4C 1.352  3083.957   IGLC2 2.236  5811.328  

JCHAIN 1.950  4792.352   IGLC2 1.328  17186.632   IGHM 2.120  7665.682  

IGHA2 1.401  2186.472   IGHM 1.123  17755.828   MALAT1 1.435  3064.135  

IGHA1 1.394  25045.873   HSPA5 0.992  2918.335   MTRNR2L12 1.082  6777.936  

IGLC2 1.364  105380.787   MALAT1 0.963  10510.735   MT-ATP8 0.917  2413.889  

FTH1 0.853  4607.734   FTH1 0.891  3429.481   FTH1 0.907  3365.871  

ISG15 0.852  2200.911   FTL 0.821  3181.098   HLA-DRB1 0.892  2431.433  

ACTB 0.850  7805.019   HSP90B1 0.746  4117.068   PTMA 0.815  3285.668  

FTL 0.811  6396.760   MT-ATP8 0.713  2108.570   SRGN 0.798  6019.020  

ACTG1 0.765  2816.229   ACTB 0.692  4465.837   HLA-DRA 0.756  3967.253  

TMSB4X 0.707  33627.828   PDIA3 0.685  2405.884   MT-ND5 0.756  5430.640  

PTMA 0.705  4846.445   MT-ND5 0.659  2831.306   IFITM2 0.688  2359.603  

GAPDH 0.696  5946.673   HSP90AA1 0.563  2780.779   PFN1 0.685  2810.210  

CD74 0.694  4239.958   MT-ATP6 0.556  5223.957   CD74 0.664  4899.420  

PFN1 0.653  2963.908   HSPD1 0.545  2797.749   ACTB 0.659  16324.214  

MT-

ATP6 
0.635  2122.471   MT-CYB 0.521  2809.355   HLA-C 0.652  2820.471  

TMSB10 0.605  4284.120   MT-ND2 0.516  4022.501   RPS13 0.649  3211.120  

MALAT1 0.603  14898.154   MT-ND3 0.514  2345.705   HLA-B 0.647  2862.303  

YBX1 0.588  2171.211   HNRNPA2B1 0.510  2623.687   NPM1 0.646  2572.229  

RPS24 0.566  2671.524   MT-ND4 0.510  3831.651   HLA-A 0.637  2451.213  

HLA-B 0.553  2257.010   MT-CO2 0.506  5319.697   GAPDH 0.631  2739.710  

MT-CO3 0.544  7057.905   MT-ND1 0.504  4194.428   MT-CYB 0.609  10615.063  

MT-ND2 0.542  3116.763   NCL 0.503  3348.467   PPIA 0.602  2400.896  

MT-CYB 0.542  3246.955       TMSB4X 0.591  15151.985  

SUB1 0.530  2086.202       RPL39 0.573  2512.036  

        RPS20 0.562  2539.395  

        RPS10 0.560  2131.890  

        UBA52 0.560  2410.621  

        EIF1 0.557  4003.951  

        MT-ATP6 0.557  15550.839  

        ACTG1 0.556  5873.674  

        MT-ND3 0.554  17580.354  

        RPL19 0.522  2308.035  

        RPLP1 0.520  4997.513  

        RPL14 0.512  2590.718  

        MT-ND2 0.512  17652.350  

  



Table S4 (Related to Figure 7). Statistics of performance on gene and UMI detection for 

four experiments of Smart-seq2 in the inDrop system with various conditions.  

 

 

L1 is RT+Pool PCR. L2 is 42/50 ℃ RT+Split PCR. S1 is 42 ℃ and RT+Pool PCR. S2 is 

42 ℃ RT+Split PCR. The RT reaction temperature for L1 and L2 is 42/50 ℃, while that for 

S1 and S2 is 42 ℃. In S1 and L1, the cDNA is pooled together for amplification. In S2 and 

L2, the cDNA is split for PCR. 

 

 

  

 

  

Raw 

Reads 

Valid 

Reads(with 

barcode in 

whitelist) 

Claimed 

Cells 

Claimed 

Cell Reads 

Claimed 

Cell UMI 

Reads 

Valid 

CB 

counts 

Median 

reads 

Median 

UMI-

effective 

reads 

Median 

gene 

counts 

Median 

UMI 

counts 

L1 203213268 123,672,238 1300 100,595,865 61,688,856 366 101543  62509  1075  2939  

L2 257489533 165,149,928 900 124,648,424 80,839,124 492 108251  70966  822  1949  

S1 293336617 182,604,144 1,300 152,093,346 100,414,242 440 113533  76759  925  2560  

S2 221840332 144,839,268 650 123,550,924 80,182,371 176 101817  66333  996  2841  



Table S5. (Related to Figure 4) The summarization of some published datasets from the 

three systems. The tissues or cell lines, cell numbers, sequencing depth and detected UMIs 

are demonstrated.  

Protocol Cell Type Source 
UMI >= 

1000 CBs 

Median 

UMIs 

Total 

reads per 

cell 

Mapped 

reads per 

cell 

inDrop HEK293 Ours* 2,500 6,373 39,189 35,034 

inDrop Zebrafish 14hpf 3 4,001 7,259 53,379 37,831 

inDrop Mouse ESC 1 703  5,667  40,088  34,119 

inDrop Human Treg 2 1,726 1,647 32,774 20,217 

Drop-seq HEK293 4 587  11,472  32,243  28,771 

Drop-seq Zebrafish 12hpf 5 4,413 2,497 NA 11,945 

Drop-seq Mouser Retina 4 3,207 4,398 NA NA 

10X HEK293 8 504  21,400  32,361  31,260 

10X HEK293* Ours** 2,288  9,015* 16,321* 15,522 

10X Zebrafish 12hpf 5 3,000  10,577 NA NA 

10X Mouse Brain 6 931 8,545 56,718 53,372 

10X Human T Cells 7 3,465  3,731  31,788  29,709 

 

Reference: 

1. Klein A M, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic 

stem cells[J]. Cell, 2015, 161(5): 1187-1201. 

2. Zemmour D, Zilionis R, Kiner E, et al. Single-cell gene expression reveals a landscape of regulatory T cell 

phenotypes shaped by the TCR[J]. Nature immunology, 2018, 19(3): 291. 

3. Wagner D E, Weinreb C, Collins Z M, et al. Single-cell mapping of gene expression landscapes and lineage 

in the zebrafish embryo[J]. Science, 2018, 360(6392): 981-987. 

4. Macosko E Z, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells 

using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214. 

5. Farrell J A, Wang Y, Riesenfeld S J, et al. Single-cell reconstruction of developmental trajectories during 

zebrafish embryogenesis[J]. Science, 2018, 360(6392): eaar3131. 

6. https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900  

7. https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_3k  

8. https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_1k 

 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_1k


Notation: 

*A different batch of beads. 

**We used half of the cDNA for downstream library preparation and sequencing (see Methods).  



Table S6. (Related to STAR Methods) The estimation of RNA-seq library preparation costs 

per cell for all three platforms. 

 

 

 

 

 

 

 

 

 

Notation:  

1: We assume each platform is used to prepare 1000 cells per day and each instrument can 

provide service for 2 years.  

2: Assuming each cells get 50000 reads on average (150bp pair-end).  

 

 

  inDrop Drop-seq 10X 

Instrument price $50,000  $30,000  $50,000  

Instrument cost per cell1 $0.07  $0.04  $0.07  

Running cost per cell $0.10  $0.10  $0.50  

Sequencing cost per cell2 $0.30  $0.30  $0.30  

Overall cost per cell $0.47  $0.44  $0.87  
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