
Nature | www.nature.com | 1

Article

A body map of somatic mutagenesis in 
morphologically normal human tissues

Ruoyan Li1,2,14, Lin Di1,2,14, Jie Li3,4,14, Wenyi Fan5,14, Yachen Liu5, Wenjia Guo5, Weiling Liu5, 
Lu Liu1,2, Qiong Li3,4, Liping Chen5, Yamei Chen5, Chuanwang Miao5, Hongjin Liu5, 
Yuqian Wang5, Yuling Ma5, Deshu Xu1,2, Dongxin Lin5,6,7,8,15 ✉, Yanyi Huang1,2,9,10,11,15 ✉, 
Jianbin Wang3,4,15 ✉, Fan Bai1,2,12,15 ✉ & Chen Wu5,6,8,13,15 ✉

Somatic mutations that accumulate in normal tissues are associated with ageing 
and disease1,2. Here we performed a comprehensive genomic analysis of 1,737 
morphologically normal tissue biopsies of 9 organs from 5 donors. We found that 
somatic mutation accumulations and clonal expansions were widespread, although 
to variable extents, in morphologically normal human tissues. Somatic copy 
number alterations were rarely detected, except for in tissues from the oesophagus 
and cardia. Endogenous mutational processes with the SBS1 and SBS5 mutational 
signatures are ubiquitous among normal tissues, although they exhibit di!erent 
relative activities. Exogenous mutational processes operate in multiple tissues from 
the same donor. We reconstructed the spatial somatic clonal architecture with 
sub-millimetre resolution. In the oesophagus and cardia, macroscopic somatic 
clones that expanded to hundreds of micrometres were frequently seen, whereas in 
tissues such as the colon, rectum and duodenum, somatic clones were microscopic 
in size and evolved independently, possibly restricted by local tissue 
microstructures. Our study depicts a body map of somatic mutations and clonal 
expansions from the same individual.

Somatic mutations occur naturally in normal cells during cell divi-
sion. Studies have revealed the somatic mutation landscape of dif-
ferent human tissues, including the skin3,4, oesophagus5,6, colon 
and rectum7, liver8, endometrial epithelium9, bronchus10, brain11,12, 
embryo13, urothelium14,15 and blood cells16,17, mostly through deep 
DNA sequencing of biopsied tissue samples. Other studies have 
implemented bioinformatic algorithms to detect somatic mutations 
from RNA-sequencing data of normal tissues18,19. Although these stud-
ies have contributed greatly to our knowledge of mutation rates, 
driver genes and mutagenic factors in different normal tissues from 
human organs, the tissue samples that they analysed usually came 
from different donors with distinct germline backgrounds and life 
histories, thus making a cross-organ comparison challenging. Ideally, 
for such comparisons, we should analyse normal tissues collected 
from the same individual. Here we combined laser-capture microdis-
section (LCM) and mini-bulk exome sequencing to systematically 
investigate somatic mutagenesis in morphologically normal tissues 
collected from nine anatomic sites of autopsy samples from five  
donors.

Sequencing and somatic mutations
In 5 deceased organ donors (PN1, PN2, PN7, PN8 and PN9) aged between 
85 and 93, we collected approximately 1,800 microbiopsies from 9 
anatomic sites of autopsy samples (Fig. 1a, Supplementary Table 1), 
which included morphologically normal epithelia from the bronchus, 
oesophagus, cardia (the junction between the lower oesophagus and 
the stomach), stomach, duodenum, colon and rectum, and normal 
parenchyma from the liver and pancreas (Extended Data Fig. 1). We 
applied a consistent sampling strategy: five layers were sectioned from 
each tissue (with a 200-µm interval between layers). Within each layer, 
10 microbiopsies with approximate 600 cells in each were densely 
collected using LCM. In tissues such as the colon and rectum, multi-
ple tissue microstructures (that is, crypts) were dissected into single 
samples to enable our dense sampling strategy with a fixed number of 
cells in each sample. While assuring quality control, we subjected 1,762 
biopsies to whole-exome sequencing (WES), excluding 25 samples with 
a less than 10-fold average coverage depth from further analysis. The 
remaining 1,737 samples had an average sequencing depth of 56-fold 
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(Fig. 1a, Supplementary Table 2). We performed somatic alteration 
identification using DNA from the peripheral blood cells of each donor 
as the germline comparators.

Overall, 53,592 unique single-nucleotide variations (SNVs) and 444 
small insertions and deletions (indels) were identified (Supplemen-
tary Table 3). We performed whole-genome sequencing (WGS) of 43 
selected samples with WES data to validate the somatic mutations that 
were called from WES. The average validation rate was 92.5% (Extended 
Data Fig. 2a, Supplementary Table 4). Sensitivity corrections were 
made to the numbers of detected mutations (Extended Data Fig. 2b, 
c). The numbers of detected somatic mutations and distributions of 
variant allele frequency (VAF) varied greatly across tissues and donors 
(Fig. 1b, Extended Data Fig. 2d). In tissues without clear physical micro-
structures—such as the oesophagus, liver and bronchus—we observed 

a median VAF of 0.21 in the oesophagus (range 0.1–0.43), 0.14 in the 
liver (range 0.08–0.38) and 0.1 in the bronchus (range 0.07–0.38), 
suggesting that there were usually multiple clones in the biopsies 
and that the degree of clonal expansion in these tissues was different 
(Fig. 1b). In tissues with clear physical microstructures—such as the 
colon and rectum—we observed a median VAF of 0.09 in the colon 
(range 0.06–0.3) and 0.09 in the rectum (range 0.06–0.26), indicating 
that multiple tissue microstructures were dissected into single samples, 
thus making these samples polyclonal, although each microstructure 
was theoretically monoclonal (Fig. 1b).

An interdependence analysis between the VAF distributions and 
numbers of mutations was performed within and across organs 
(Extended Data Fig. 3). As the number of detected mutations may be 
influenced by the clonality of our biopsy samples, we only included 
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Fig. 1 | Research strategy and summary of genomic alterations detected in 
normal tissues from five donors. a, LCM and mini-bulk exome sequencing 
procedure. PEN, polyethylene naphthalate. Scale bar, 400 µm. b, Top, number 
of somatic mutations detected in the coding regions in tissue biopsies. 
Bottom, median (med.) VAF in tissue biopsies. Each biopsy sample is 
represented by a coloured dot. Red bars represent medians. c, The mutation 
burden in samples with median VAFs between 0.08 and 0.14. Top, box plots 
showing the mutation burden in organs from different donors. The lower edge, 

upper edge and centre of the box represent the 25th (Q1) percentile, 75th (Q3) 
percentile and the median, respectively. The interquartile range (IQR) is 
Q3 – Q1. Outliers are values beyond the whiskers (upper, Q3 + 1.5 × IQR; lower, 
Q1 − 1.5 × IQR). Detailed information about the box plots can be found in 
Supplementary Table 3. Bottom, dot plots showing the mutation burdens in 
different organs. The medians are labelled and represented by red bars. d, Heat 
map showing somatic CNAs in biopsy samples. Donor information 
corresponds to c. Oeso, oesophagus; bron, bronchus; panc, pancreas.
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samples with comparable median VAFs (between 0.08 and 0.14) for 
a cross-tissue analysis of mutation burden. Pancreas parenchyma 
contained the fewest mutations (median and adjusted median: 11 
and 12 per exome, respectively), whereas the number of mutations 
in the liver (median and adjusted median: 73 and 76 per exome) was 
the greatest among all tissues—substantially higher than the number 
of mutations in epithelial cells from other organs. Normal epithe-
lial tissues from cardia (median and adjusted median: 39 and 41 per 
exome, respectively), rectum (median and adjusted median: 47 and 54 
per exome) and duodenum (median and adjusted median: 41 and 44 
per exome) had higher numbers of mutations (Fig. 1c, Extended Data 
Fig. 2c). Notably, the number of mutations tended to decrease in highly 
expressed genes in different tissues (Extended Data Fig. 4a), implying 
that transcription-coupled repair is more active in highly expressed 
genes. We also observed varying types of somatic mutations across 
organs (Extended Data Fig. 2d), which may reflect different underlying 
mutational processes.

Somatic copy number alterations
We assessed somatic copy number alterations (CNAs) in normal tis-
sues by subjecting 1,764 biopsies to low-depth WGS (Supplementary 
Table 4). Overall, we observed diploid genomes in most (1,608 out of 
1,764; 91.2%) normal samples (Extended Data Fig. 4b, Supplementary 
Table 4). Sporadic CNA events could be detected in a number of sam-
ples (Fig. 1d). Of note, the samples with CNAs exhibited strong organ 
preferences. Normal oesophageal tissues (31 out of 41 (75.6%) from 
PN1, 10 out of 41 (24.4%) from PN8 and 24 out of 50 (48.0%) from PN9; 
P < 10−25, hypergeometric test) were found to contain CNAs that were 
enriched as whole-chromosomal amplifications of chromosomes 3, 
5 and 7. Previous studies6 have reported an occasional amplification 
of chromosome 3 in normal oesophagus, but not amplifications of 
chromosomes 5 and 7. In addition, in some cardia samples (27 out of 
34 (79.4%) from PN7 and 15 out of 44 (34.1%) from PN8), we detected 
CNAs that exhibited whole-chromosomal amplifications of chromo-
somes 2, 7, 8, 13 and 20, which, to our knowledge, have not previously 
been reported.

Mutational signatures in normal tissues
Through clustering the trinucleotide spectra of somatic mutations, 
we found that most samples tended to cluster independent of their 
tissue of origin, whereas some liver samples—mainly from donors PN1 
and PN2—distributed separately from the main cluster (Extended Data 
Fig. 5a, b). Notably, most rectum, colon, stomach, cardia and duode-
num samples tended to cluster together (P <1 × 10−40, hypergeomet-
ric test), suggesting that some common major mutational processes 
actively operate in these tissues (Extended Data Fig. 5b). To further 
examine the underlying mutational processes, we performed de novo 
single-base-substitution (SBS) mutational signature extraction based 
on a Bayesian hierarchical Dirichlet process7,8 (Methods). In total, we 
deciphered seven mutational signatures (signatures A to G), each of 
which mostly conformed to the Catalogue of Somatic Mutations in 
Cancer (COSMIC) mutational signatures SBS5, SBS1, SBS22, SBS4, 
SBS45, SBS13 and SBS2, respectively20,21 (Extended Data Fig. 5c, d, Sup-
plementary Tables 5–7).

We found two age-related endogenous mutational signatures22, SBS1 
and SBS5, throughout all normal samples across organs and donors 
(Fig. 2a, Extended Data Fig. 5e). The relative activities of SBS1 and SBS5 
varied across tissues but exhibited a conserved tissue-specific pattern 
among donors. The duodenum, colon and rectum showed higher SBS1/
SBS5 ratios compared with the bronchus, pancreas, oesophagus and 
liver (Fig. 2b). The preference of SBS1 and SBS5 mutations has been 
compared among various cancer types22, but we report the SBS1/SBS5 
ratios in normal tissues from different organs. Two other endogenous 

mutational signatures, SBS2 and SBS13, which have been associated 
with the activity of APOBEC cytidine deaminases23, emerged sporadi-
cally among normal samples (Fig. 2a).

We identified two exogenous mutational signatures (SBS4 and SBS22) 
that exhibited strong transcriptional strand asymmetries (Extended 
Data Fig. 6a, b). We observed SBS4—the mutational signature that is 
associated with tobacco smoking—mostly in liver samples but weakly 
in some bronchus and oesophagus samples (Fig. 2a), consistent with 
previous findings5,8,10. SBS22, for which the underlying aetiological 
factor is exposure to aristolochic acid, exhibited notable activity in 
liver samples from three donors (Fig. 2a, Extended Data Fig. 5e). Aris-
tolochic acid mutagenesis has been extensively implicated in liver and 
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bladder cancers in Asian individuals24–26 and has also been reported in 
alcohol-related liver disease and normal urothelium8,15. Notably, the 
three donors with obvious SBS22 activity in our study were female 
(Supplementary Table 1). A sex bias in aristolochic acid mutagenesis 
has been reported in upper tract urothelial carcinoma, but the underly-
ing mechanism remains unclear27. We consistently observed that the 
liver tissues contained more somatic mutations caused by exogenous 
mutational processes, suggesting that the liver has a higher risk of 
exposure to environmental carcinogens than do other organs (Fig. 2b).

Our sampling strategy enabled us to compare mutational signatures 
across different organs of the same donor, with the assumption that 
such samples were influenced by the same life history. The potential aris-
tolochic acid exposure history of donors PN1 and PN2 has been found 
to contribute to the mutagenesis in the liver. Within those donors, we 
found potential aristolochic acid mutagenesis in other organs, such as 
the oesophagus and duodenum of donor PN1 and the stomach of donor 
PN2 (Fig. 2a, c, Extended Data Fig. 6c). To our knowledge, there have 
been no previous reports of aristolochic acid mutagenesis in normal 
or cancerous stomach, duodenum or oesophagus tissues.

We observed a marked difference in the mutational spectra between 
two tissue layers in the oesophagus of donor PN7, with a noticeable 
APOBEC-associated mutational process in layer 3 but not in layer 4 
(Fig. 2d, Extended Data Fig. 7a; P < 10−3, multinomial test by Monte-Carlo 
simulations). Similar intra-tissue heterogeneity of mutational signa-
tures was also exemplified by SBS22 in duodenum samples from donor 
PN7 (Extended Data Fig. 7b; P < 10−4, multinomial test by Monte-Carlo 
simulations). We also found considerable differences in the mutational 
spectra and relative activities of SBS4 and SBS22, even between adjacent 
LCM biopsies (Fig. 2e, Extended Data Fig. 7a, c; P < 10−4, multinomial 
test by Monte-Carlo simulations). This regional variation (both between 
and within tissue layers) in mutational signature activity may reflect 
regional activations of different mutagenic driving factors.

Landscape of driver mutations
To identify potential driver genes in normal tissues, we applied the 
dNdScv algorithm to all detected somatic mutations28. With hypoth-
esis testing applied to all coding genes and 126 driver gene candidates 
(Methods, Supplementary Table 8), we identified 32 potential driver 
genes, including canonical cancer drivers such as NOTCH1, TP53, ARID1A 
and ERBB2 (Fig. 3a, Extended Data Fig. 8a). These 32 genes recapitulated 
signalling pathways that have been widely implicated in tumorigenesis 
(Extended Data Fig. 8b, c). In addition, we identified 19 cancer hotspot 
mutations in 8 driver genes, with the greatest number of hotspot muta-
tions being detected in TP53 (9 hotspots out of 18 mutations) (Extended 
Data Fig. 8d, Supplementary Table 9).

The proportion of samples with driver mutations varied across 
organs. We detected driver mutations in 6.5% (ranging from 2% in PN9 
to 12.2% in PN1) of the pancreas parenchyma samples, but 73.8% (ranging 
from 67.5% in PN2 to 81.6% in PN9) of the oesophageal samples contained 
at least one driver mutation (P = 0.0193, two-sided Wilcoxon rank-sum 
test) and about 11% (ranging from 4.6% in PN1 to 24.5% in PN9) con-
tained more than three driver mutations (Fig. 3b). On the other hand, 
mutations in genes such as ARID1A, TP53, NOTCH1 and FAT1 were often 
shared by multiple samples (Extended Data Fig. 8e), which implies that 
mutations in those genes were more likely to drive clonal expansions.

Mutations in the 32 potential driver genes were distributed hetero-
geneously across organs and donors (Fig. 3c). NOTCH1 was found to be 
the most frequently mutated gene (65 unique non-silent mutations in 
101 samples) (Fig. 3a, c). NOTCH1 and TP53 mutations, although widely 
observed across organs, showed enrichments in oesophageal tissues 
(ratio of observation to expectation (RO/E) = 2.87 and 2.92, respectively; 
P < 10−4, hypergeometric test) (Extended Data Fig. 8f, Supplementary 
Table 10). MUC6 was identified as a driver gene that is enriched in nor-
mal cardia and stomach (RO/E = 6.59 and 2.14, respectively; P < 10−4 and 

P = 0.074) (Extended Data Fig. 8f). It has also been reported as a driver 
gene with specificity in stomach adenocarcinoma28–30. This tissue-specific 
correspondence of driver genes in cancerous and normal tissues is note-
worthy. The prevalence of MUC6 mutations in normal gastric tissues 
(cardia and stomach) was significantly higher than that in gastric cancers 
(Extended Data Fig. 8g; adjusted P < 10−7, Fisher’s exact test), suggesting 
that different molecular mechanisms underlie the clonal evolution of 
normal cells versus that of cancer cells. Similarly, KMT2D mutations 
occurred preferentially in liver tissues (RO/E = 2.76; P = 0.0003, hypergeo-
metric test), ERBB3 mutations occurred preferentially in rectal tissues 
(RO/E = 3.62; P = 0.0001, hypergeometric test) and SMARCA4 mutations 
were enriched in duodenal tissues (RO/E = 6.12, P = 0.005, hypergeometric 
test) (Extended Data Fig. 8f, Supplementary Table 10). We also observed 
heterogeneous driver mutation occurrences between individual donors. 
For example, four unique PTCH1 mutations were found in liver samples 
from donor PN8, but none were found in liver samples from the other 
four donors (Fig. 3c; P = 6 × 10−5, hypergeometric test).

Spatial architecture of mutant clones
We investigated how the accumulation of mutations and the expansion of 
mutant clones are coordinated in normal tissues. For each donor, we plotted 
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Fig. 3 | Mutational landscape of driver genes across organs. a, Stacked bar 
plot showing the number of unique mutations in the 32 driver genes. Asterisks 
indicate genes that are significant (q < 0.1) in dNdScv analysis. b, Stacked bar 
plot showing the fraction of biopsy samples with zero, one, two, or three or 
more driver mutations across the five donors. c, Heat map showing the number 
of non-silent unique mutations in the 32 driver genes across different organs of 
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in each donor. Green boxes indicate representative driver genes with high 
numbers of mutations in different organs and donors. Asterisks indicate genes 
that are significant (q < 0.1) in dNdScv analysis.
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the distribution of the number of mutations versus the average mutant cell 
fraction (MCF) of each sample (Extended Data Fig. 9). In the oesophagus 
and cardia, mutant clones tended to be large, but the numbers of muta-
tions were relatively low. By contrast, normal colonic and rectal tissues 
accumulated many mutations, although the degree of clonal expansion 
was low on the spatial scale. In the liver, some samples simultaneously 
had high mutational burdens and showed substantial clonal expansions.

We observed two major scenarios of somatic clonal evolution across 
organs: (1) a single mutant clone expands to a macroscopic scale; and (2) 
competitive mutant clones originate and evolve independently. In the 
oesophagus of donor PN9, we identified large-scale clonal expansions 
that covered two to more than ten LCM biopsies and spread across 
two to three layers (Fig. 4a, b, Extended Data Fig. 10a). Similar circum-
stances were observed in the oesophagus of other donors (Extended 
Data Fig. 10b). Mutations such as those that occurred in NOTCH1, 
TP53 and ARID1A may have driven the mutant clonal expansions in 
the oesophagus of donor PN9 (Extended Data Fig. 10c). For example, 
clone 1 contained a NOTCH1 mutation (p.A348D) and expanded to 
intermix with adjacent clone 2, which had a FAT1 mutation (p.E3124*). 
Samples in clone 3 shared no driver mutations but ubiquitously car-
ried CNAs in chromosomes 3, 5 and 7. This potential CNA-driven early 
clonal expansion in normal oesophagus has not, to our knowledge, 
been previously reported. The degree of mutant clonal expansion in 
the liver was comparable to that in the oesophagus, but with fewer 
driver events (Fig. 3c, Extended Data Fig. 11a, b). By stark contrast, 
colon samples were found to evolve as independent mutant clones 
(Fig. 4c, Extended Data Fig. 12a). These two typical scenarios were also 
observed in samples from other donors (Extended Data Figs. 10–12).

We went on to calculate an independent index for each tissue, which 
is the ratio of the number of samples that do not share any mutation 
clusters with others divided by the total number of samples with at 
least one mutation cluster (Methods). We defined an elevated clonal 
expansion on the spatial scale as having a low independent index but 
a high average MCF. Clonal expansions in the oesophagus, cardia and 
liver tended to be larger, whereas the colon, rectum, and duodenum—
which are constrained by tissue physical microstructures—exhibited 
low degrees of clonal expansions on the spatial scale (Fig. 4d). Mutant 
clones in the cardia and stomach tissues from donor PN7 were substan-
tially expanded (Extended Data Fig. 11c), which could be associated 
with the recurrent CNAs that they contained (Fig. 1d). In donor PN2, the 
degree of clonal expansion in the liver was large and comparable to that 
in the oesophagus. This could be related to the overwhelming levels of 
aristolochic acid mutagenesis in the liver tissues of donor PN2 (Fig. 2a).

Discussion
In this study, we used LCM and mini-bulk WES to characterize somatic 
mutations and clonal expansions in samples from nine anatomic sites 
that were collected from five donors. We identified varying mutation 
burdens, CNAs, mutational signatures and degrees of clonal expan-
sion across normal human tissues (Supplementary Discussion). Com-
paring tissue samples across organs from the same individual could 
potentially offset the systematic bias that is introduced by differing 
ages, germline backgrounds or lifestyles when tissue samples from 
different individuals are compared. For example, we compared the 
relative activity of SBS1 and SBS5 across different tissues from the 
same individual.

Our study encompassed various tissue types both with and without 
physical microstructures, which posed challenges to our LCM experi-
ments (Supplementary Discussion). We kept a consistent sampling 
strategy across tissues by dissecting a fixed number of cells in each 
sample, which brought multiple microstructures (for example, crypts) 
into single samples. Although this research strategy has clear benefits, 
it could have influenced the estimation of mutation burdens and rates 
in different tissues and cells and caused the discrepancy between muta-
tion burdens (for example, the mutation burden in colon and rectum) 
that is reported in our study and other studies7,31,32. Comparing the 
mutation rate of stem cells between tissues with and without physi-
cal microstructures remains a challenge, which could potentially be 
addressed using the nanorate sequencing method in the future33.
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maries, source data, extended data, supplementary information, 
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Methods
Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Ethics statement and sample collection
The protocol and informed consent documents of this study were 
reviewed and approved by the National Cancer Center/Cancer Hospi-
tal, Chinese Academy of Medical Sciences and Peking Union Medical 
College Ethics Committee (NCCEC, reference number 20/069-2265). 
Written informed consent was obtained from all donors. We obtained 
normal tissue samples from five deceased organ donors who had been 
recruited at the Body Donation Registration and Receiving Station in 
Peking Union Medical College, Beijing. None of the donors had under-
taken neoadjuvant systemic therapy. Within 16 h of death, we separately 
collected tissues (lengths ranging from 1 to 5 cm) from nine organs 
(bronchus, oesophagus, cardia, stomach, duodenum, colon, rectum, 
liver and pancreas) from each donor. We then opened luminal organs 
longitudinally and cut each into approximately 0.5 × 0.5-cm pieces. 
All tissue samples were snap-frozen in liquid nitrogen and stored at 
−80 °C. The clinical and pathological characteristics of each donor 
are summarized in Supplementary Table 1.

Histopathological examination
We fixed the tissues in 10% buffered formalin and embedded them in 
paraffin blocks. Then the formalin-fixed paraffin-embedded (FFPE) 
tissues were sectioned into 3-µm-thick sections. The specimens were 
stained with H&E and analysed under light microscopy. Three patholo-
gists independently examined the morphological and histological 
features of the tissues. The slides were imaged using the Vectra Polaris 
Automated Quantitative Pathology Imaging System (Perkin Elmer).

Preparation of tissue sections
We embedded tissue sections in optimal cutting temperature (OCT) 
medium (Thermo Fisher Scientific) at −25 °C. A total of five layers were 
cut at a thickness of 30 µm using a Leica cryotome, with a 200-µm gap 
between each layer. We transferred each section to a polyethylene naph-
thalate membrane slide (Thermo Fisher Scientific) and then incubated 
the slides in cresyl violet acetate for 1 min and rinsed them twice in 
water. The remaining, unmounted tissues were used for immunohis-
tochemistry and immunofluorescence analyses.

Laser-capture microdissection
We used an LMD7000 laser microdissection microscope (Leica 
Microsystems) with 10× magnification and proper laser settings to 
microdissect the mounted and stained tissues from the previous sec-
tion. Tissue layers with a target size of 0.06 mm2, which corresponded to 
about 600 cells, were microdissected. We placed each 600-cell micro-
dissected isolate into an empty cap of a nuclease-free 0.2-ml Axygen 
PCR tube (Thermo Fisher Scientific). We took photomicrographs both 
before and after LCM.

Whole-genome library preparation and sequencing
We lysed the LCM samples using a low-temperature protocol with 
cold-active protease to reduce DNA-base oxidative deamination, thus 
eliminating artifacts in somatic mutation calling. Specifically, each 
biopsy sample was lysed in 8 µl customized lysis buffer (15 µg µl−1 native 
Bacillus licheniformis protease (Creative EnzymesNATE-0633), 30 mM 
Tris-HCl (pH 7.6, Rockland Immunochemicals, MB-003), 10 mM NaCl 
(Ambion, AM9760G), 5 mM EDTA (Ambion, AM9260G), 0.4% Triton 
X-100 (Sigma, T9284)) at 6 °C for 1 h. The lysate DNA was further tag-
mented by 1 µl Tn5 transposome (Vazyme, TTE Mix V50 in TD501) into 
adaptor-flanked fragments in 20 µl 1× tagmentation buffer (10 mM 

Tris-HCl, 7 mM MgCl2 (Ambion, AM9530G), 10% N,N-dimethylformamide 
(Sigma, D4551), 4× protease inhibitor (Promega, G6521)). After incubat-
ing the tagmentation reaction at 55 °C for 1 h, 0.8 µM sequencing index 
primer and Q5 high-fidelity 1× master mix (New England Biolabs, M0492) 
were added to perform PCR amplification. The PCR procedure was 
10 min at 72 °C for gap-filling; 30 s at 98 °C for pre-denaturation; 21 
cycles of 15 s at 98 °C, 30 s at 60 °C and 2 min at 72 °C for denaturation; 
and 5 min at 72 °C for the last elongation. The purified product was 
quality-checked and sequenced using the Nextseq 500, Hiseq 4000 
or HiSeq XTen sequencers (Illumina). We also performed high-depth 
WGS of selected samples using the Illumina NovaSeq 6000 sequencer. 
Image processing from sequencing data was performed using standard 
Illumina software and pipeline (bcl2fastq v.2.16).

Whole-exome library preparation and sequencing
The sequencing libraries were exome-captured using the SureSelectXT 
Human All Exon V6 (for oesophagus libraries) (Agilent, 5190-8864) or 
V7 (for libraries from other tissues) (5191-4005) following the manufac-
turer’s guidelines. The products were quality-checked and sequenced 
with Illumina HiSeq XTen sequencers (Illumina), generating 2 × 150-bp 
paired-end reads. Image processing from sequencing data was per-
formed using standard Illumina software and pipeline (bcl2fastq v.2.16).

Copy number analysis based on WGS data
We performed low-depth WGS (about 1.5 × 106 uniquely mapped 
reads) on each sample. For the data analysis, we first used Cutadapt34 
to trim adapters from the paired-end reads. Then, the clean reads were 
mapped to human reference genome hg19 (University of California) 
by using Bowtie235 with default settings. PCR duplicates were marked 
using Picard MarkDuplicates (http://broadinstitute.github.io/picard). 
Unique reads were then tabulated into non-overlapping dynamic bins 
(500-kb resolution) across the genome. Lowess regression normaliza-
tion was performed to reduce the GC bias of bin counts. Copy number 
was called using the R package DNAcopy with the circular binary seg-
mentation (CBS) algorithm. Finally, we calculated median absolute 
pairwise differences (MAPD) to identify and filter out low-quality 
samples (MAPD > 0.2).

SNV and indel calling
Paired-end reads from the sequencer were aligned to the human refer-
ence genome hg19 u-sing the Burrows–Wheeler Aligner (BWA) with 
default parameter settings36. The aligned BAM files were then sorted 
and merged (if needed) using SAMtools37 (v.0.1.19). To call SNVs and 
indels from the exome sequencing data, we first realigned the mapped 
reads using the Genome Analysis Toolkit38 (GATK 2.1–8) based on infor-
mation of the dbSNP 135 (https://www.ncbi.nlm.nih.gov/snp/). Then, 
Picard-tools 1.76 was used to fix mate pairs and mark PCR duplicates 
(http://broadinstitute.github.io/picard). Next, the base quality recali-
bration was performed with GATK.

SNV calling
We used MuTect39 (v.1.1.4) to call the SNVs in each biopsy sample, with 
the genomic DNA of white blood cells (WBCs) from each donor’s periph-
eral blood as the germline comparator. To ensure the accuracy of SNV 
calling, we applied a series of filtering steps. (1) At least 10-fold coverage 
was required in the WBC samples containing at most one-fold mutated 
coverage (one-fold mutated coverage was allowed only when the total 
local coverage in the WBC was over 50-fold). (2) At least 10-fold total 
coverage was required in tissue biopsy samples with at least 3-fold 
mutation coverage. (3) The mutation allele frequency of each SNV was 
required to be greater than 5%. (4) The minimum value of the maximum 
mapping quality score of the mutated alleles was 20. (5) Variants both 
listed in the dbSNP database and (6) reported by the National Heart, 
Lung, and Blood Institute (NHLBI) Exome Sequencing Project (http://
evs.gs.washington.edu/EVS) were removed.

http://broadinstitute.github.io/picard
https://www.ncbi.nlm.nih.gov/snp/
http://broadinstitute.github.io/picard
http://evs.gs.washington.edu/EVS
http://evs.gs.washington.edu/EVS
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Indel calling
We used the GATK Unified Genotyper to call indels with a series of 
filtering steps. (1) At least 10-fold coverage was required in the WBC 
samples without any mutated reads. (2) At least 10-fold total coverage 
in tissue biopsy samples and no less than 3-fold mutation coverage was 
required to support each indel. (3) Variants both listed in the dbSNP 
database and (4) reported by the NHLBI Exome Sequencing Project 
were removed. All indels that passed the filtering process were manu-
ally reviewed using SAMtools ‘tview’ to further eliminate those that 
presented in poorly mapped reads. We used SnpEff v.3.0 (ref. 40) to 
annotate all SNVs and indels.

Validation of mutations called from WES on the basis of WGS 
data
To validate somatic mutations called from WES, we performed 
high-depth WGS of 43 normal tissues (with WES data) and 5 blood sam-
ples. Paired-end reads from WGS were aligned to the human reference 
genome hg19 (UCSC) using BWA-MEM with default parameters36. We 
then used picard-tools 1.76 to mark PCR duplicates (http://broadinsti-
tute.github.io/picard). Somatic mutations were called using MuTect39 
(v.1.1.4) with the following criteria. (1) At least 10-fold coverage was 
required in the blood samples bearing at most one-fold mutated cover-
age (one-fold mutated coverage was allowed only when the total local 
coverage was over 50-fold in the normal sample). (2) At least 8× total 
coverage was required in the tissue biopsy samples with at least 2× 
mutated coverage. (3) The minimum value of the maximum mapping 
quality score of the mutated alleles was 20. (4) Variants both listed in 
the dbSNP database and (5) reported by the NHLBI Exome Sequenc-
ing Project (http://evs.gs.washington.edu/EVS) were removed. We 
compared mutations called from WGS (coding regions) with those 
from WES. In the meanwhile, we adopted a ‘force-calling’ strategy and 
examined whether there was evidence of mutations called from WES 
data appearing in WGS data by performing a pile-up at each mutation 
locus using WGS BAM files (using SAMtools ‘tview’ tool).

Sensitivity correction of mutation burden
We performed sensitivity corrections of mutation burdens in differ-
ent tissues using a method described by two previous studies41,42. The 
sensitivity of mutation calling has a potential influence on the calcula-
tion of mutation burden and is related to two factors: the sequencing 
coverage and the clonality. Therefore, we calculated the sensitivity of 
mutation calling in each sample with the sequencing coverage and the 
clonality being taken into consideration. In brief, in each sample, we first 
generated 10,000 simulated sequencing depths around the observed 
sequencing depth based on a Poisson distribution (using the observed 
depth as the lambda). Theoretically, for a specific mutation, mutant 
reads are drawn from a binomial distribution with the total number of 
trials being the coverage depth and the probability of success on each 
trial being the VAF of this mutation. According to this theory, we calcu-
lated the probability of observing at least three mutant reads for SNVs 
and indels (the minimum mutant depth required in our mutation calling 
process) based on each simulated sequencing depth and the observed 
median VAF of mutations in the sample. There are 10,000 probabilities 
generated from this step, and we further calculated the average of all 
these probabilities as the sensitivity of mutation calling in the sample. 
Finally, we divided the observed number of mutations in each sample 
by the estimated sensitivity to correct the mutation burden.

Relationship between the number of mutations and gene 
expression levels
We downloaded the gene expression matrix from the GTEx project (v.8 
data)43, which includes tissue-specific gene expression for six types 
of tissues that we collected in this study (colon, oesophagus, liver, 
stomach, pancreas and lung). Expression levels for each tissue were 

measured as median transcripts per million (TPM). We ranked genes 
from low to high according to the log2-transformed expression levels 
(log2(TPM + 1)) and binned them into four quantiles. Mutation numbers 
in the four quantiles were then calculated.

Mutational signature extraction using the Bayesian hierarchical 
Dirichlet process
We studied the underlying mutational signatures that operated in nor-
mal tissues from different organs on the basis of all SNVs detected in 
both coding and non-coding regions in the exome sequencing data. 
To minimize the bias in mutational signature analysis, we combined 
normal biopsy samples from each dissected layer of each organ into a 
single sample, thus increasing the number of mutations available for the 
mutational signature analysis. Only unique mutations in each dissected 
layer were included to avoid double counting of mutations. We excluded 
the bronchus layer-1 sample of donor PN8 from the following mutational 
signature analysis because the mutation number was smaller than 40.

SBS mutational signatures were extracted using the Bayesian hier-
archical Dirichlet process (HDP) implemented in the HDP R package44 
(https://github.com/nicolaroberts/hdp). Substitutions (including C>A, 
C>T, C>G, T>A, T>C and T>G) and their trinucleotide sequence contexts 
were considered in this analysis. Also, we used all the mutational signa-
tures reported by the Pan-Cancer Analysis of Whole Genomes (PCAWG) 
project as the prior in this HDP-based analysis, without conditioning 
on any subsets of these prior signatures. Detailed information about 
parameter settings are included: (1) Hyperparameters for the α cluster-
ing parameter (α and β) were set to 1. (2) The parameter ‘initcc’ was set 
to 40 so that the extraction was started with 40 data clusters. (3) The 
initial 10,000 iterations of the Gibbs sampler (parameter ‘burnin’) were 
discarded. (4) After that, we collected 50 posterior samples (parameter 
‘n’) with an interval of 50 iterations (parameter ‘space’). (5) After each 
Gibbs sampling iteration, three iterations of concentration parameter 
sampling were performed (parameter ‘cpiter’).

Then, we compared our extracted mutational signatures to those that 
have been reported and published (COSMIC and PCAWG) based on the 
cosine similarity (the formula described below). Extracted signatures 
with a cosine similarity of greater than 0.85 compared to a known sig-
nature from either the COSMIC or the PCAWG catalogue of signatures 
were considered as the known signature with the highest similarity.

Cosine similarities between extracted mutational signatures (A) and 
known ones (B) were calculated as follows:
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In this formula, n = 96 because we considered all 96 trinucleotide muta-
tion contexts.

In total, we extracted seven mutational signatures that matched 
known mutational signatures. The relative activities of these signatures 
were used to generate the bar plot (Fig. 2a). The summed of SBS4 and 
SBS22 activities was considered as the mutagenic contribution from 
environmental factors.

Mutational signature analysis using deconstructSigs
We deconstructed the mutational signatures among the individual 
normal liver samples of donor PN9 using the R package deconstruct-
Sigs45 (v.1.8.0) with default parameters. This approach can identify the 
closest fit from linear combinations of pre-defined or known mutational 
signatures and can be used to decipher the relative activity of each 
signature in each sample using linear decomposition. In our analysis, 
we restricted the pre-defined mutational signatures to the seven that 
we de novo extracted (SBS1, SBS2, SBS4, SBS5, SBS13, SBS22 and SBS45) 
using HDP across normal tissues. We then used the relative weight 
of each signature to generate donut plots which were subsequently 
mapped onto histological photographs.

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
http://evs.gs.washington.edu/EVS
https://github.com/nicolaroberts/hdp


Transcriptional strand bias of SBS4 and SBS22
To investigate transcriptional strand bias, we used the method that 
was described in a previous study on normal bladder mutagenesis14. 
In brief, gene strand information was extracted from the RefSeq data-
base46 and mutations were annotated as to whether the pyrimidine 
base was located on the template or coding strand. The probability, 
P, that a particular mutation, i, could be assigned to a given signature, 
j, in genome k was calculated as follows:

P
W F

W F
=

×
∑ ×i j k

j k i j

j j k i j
, ,

, ,

, ,

in which Wj,k is the proportion of mutations assigned to signature j in 
genome k by the HDP method and Fi,j is the fraction of mutations in 
signature j that are the same substitution type and occur at the same 
trinucleotide context as mutation i.

Mutation assignment probabilities were used in two different ways 
for analysing transcriptional strand asymmetries. (1) Mutation assign-
ment probabilities were summed together. (2) Only mutations with an 
assignment probability greater than 0.5 were included in the analysis.

Detection of potential driver genes under positive selection
To identify potential driver genes in the normal tissues of differ-
ent organs, we used the dNdScv algorithm in R (https://github.com/
im3sanger/dndscv)28, which calculates the ratio of the rate of non-silent 
mutations versus silent mutations, while considering the mutation 
sequence context, the sequence of each gene and the mutation rate varia-
tion across genes. As our entire study covered normal samples from nine 
different organs from five different donors, the driver detection process 
was complicated. Therefore, we adopted two strategies to detect driver 
genes using dNdScv. First, we included all somatic mutations detected 
in all normal tissues in the nine organs from the five donors as input 
for the dNdScv algorithm. Second, we included all somatic mutations 
detected in normal tissues in each specific organ from the five donors to 
do organ-specific dNdScv analysis. In each of those strategies, we used 
two gene sets (all coding genes and 126 selected driver gene candidates) 
for the hypothesis testing in dNdScv analysis. The 126-gene list included 
genes selected from three sources: (1) driver genes that were identified 
using the dNdScv among cancers in the lung, oesophagus, colorectum, 
liver and stomach in a previous pan-cancer study28; (2) driver genes that 
were identified in The Cancer Genome Atlas (TCGA) lung47, oesopha-
geal48, colorectal49, liver50 and stomach29 cancer studies; (3) driver genes 
that have been reported in recent normal-tissue-sequencing studies on 
lung10, oesophagus5,6, colorectum7, liver8, skin3 and endometrial9 tissues. 
The list of the 126 genes can be found in Supplementary Table 8. Through 
this analysis, we considered genes that matched one of the following 
five categories as potential driver genes in our study.

Category 1: genes that were significant (q < 0.1) when the analysis 
involved all tissues from all donors and hypothesis testing was applied 
across all coding genes. Category 2: genes that were significant (q < 0.1) 
when the analysis involved all tissues from all donors and hypothesis 
testing was restricted to the 126 selected genes. Category 3: genes that 
were significant (q < 0.1) when the analysis involved normal tissues in 
certain organs from the 5 donors and hypothesis testing was applied 
across all coding genes. Category 4: genes that were significant (q < 0.1) 
when the analysis involved normal tissues in certain organs from the 5 
donors and hypothesis testing was restricted to the 126 selected genes. 
Category 5: the genes that did not fit into any of the above four cat-
egories but contained at least 8 unique somatic mutations in the 126 
selected driver gene candidates.

We excluded TTN from the final list of potential driver genes because 
it mutates frequently in various cancers, most probably because of 
its large gene size. We conducted pathway enrichment analysis of our 
32 putative driver genes using the Reactome FI Cytoscape plug-in51.

To study the potential preference of MUC6 mutations in normal car-
dia and stomach tissues, we listed the top-10 most frequently mutated 
genes in TCGA gastric cancer studies and investigated the number 
of mutations in these genes in normal cardia and stomach tissues. In 
TCGA gastric cancers, there were 13/266 mutations (in a total of 266 
mutations in these 10 genes) detected in MUC6. In normal cardia and 
stomach tissues, there were 17/30 mutations (in a total of 30 mutations 
in these 10 genes) detected in MUC6. We used the Fisher’s exact test 
to calculate the statistical significance and the Benjamini–Hochberg 
method for multiple testing corrections.

To investigate whether there are any hotspot mutations being 
detected among normal tissues, we searched and downloaded a list 
of hotspot mutations documented in a previous publication18. In this 
list, hotspot mutations are defined as those in cancer genes (Cancer 
Gene Census) that appear more than three times in the TCGA consen-
sus somatic mutation call set (https://doi.org/10.7303/syn7214402). 
We compared these hotspot mutations with mutations detected in 
driver genes in our study.

Organ preferences of mutated driver genes
To explore the potential organ preferences of mutated driver genes, 
we compared the observed and expected number of mutations of each 
driver genes across different organs. The ratio of observation to expecta-
tion (RO/E) was calculated as follows: RO/E = Observed/Expected, in which 
the expected mutation numbers in different driver genes across organs 
were calculated based on the chi-square test. We considered a driver gene 
both with a RO/E value of greater than 1 in a specific organ and that was 
detected in that organ in more than one donor as having a potential pref-
erence for that organ. We calculated P values for the enrichment of driver 
genes across different normal tissues using the hypergeometric test.

Mutant cell fractions and clone size
The fraction of cells with a somatic mutation in an individual normal 
biopsy sample is proportional to the VAF of that mutation. However, 
that estimated fraction can be affected by local CNAs at the mutated 
site. As described in previous studies3,5, considering local copy num-
ber status, the relationship between the MCF and the VAF of a specific 
somatic mutation can be described as:

P PMCF = × VAF/(CN + ( × VAF) − (CN + CN ) × VAF)m m n

In this equation, P represents the average ploidy of cells without this 
mutation, CNm represents the copy number of alleles with the muta-
tion in mutated cells, and CNn is the copy number of alleles without the 
mutation in mutated cells.

In this study, we found that most normal biopsy samples were free of 
CNAs. Meanwhile, we found only a small number of somatic mutations 
occurred in the genomic regions with CNVs in some specific normal 
tissues. Therefore, for mutations in the autosomes and X chromosome 
of female individuals, the MCF can be simply calculated as follows: 
MCF = 2 × VAF. For mutations that occurred in the X chromosome of 
male individuals, MCF can be estimated as follows: MCF = VAF. We only 
calculated MCFs of SNVs, and not indels, in our study.

Clustering MCFs across multiple samples
To study the clone sharing events across multiple normal biopsy sam-
ples in different organs, we clustered somatic mutations from the mul-
tiple samples into different clusters based on the Bayesian Dirichlet 
process. We slightly modified the method described in a previous 
study8. In brief, instead of using VAFs of mutations, we first multiplied 
MCFs of mutations by 100, which thus represented the percentages of 
cells with certain mutations. Then we used integer MCF percentages as 
input for the Bayesian Dirichlet process. As described in that study, the 
model includes a potential split-merge step at each cycle of the Gibbs 
sampler, followed by a previously described Metropolis–Hastings 
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proposal for conjugate distributions. We ran the Gibbs sampler for 
15,000 iterations, dropping the first 10,000 as a burn-in. We used the 
Equivalence Classes Representatives (ECR) algorithm52, implemented 
in the R package label.switching, to resolve the label-switching problem 
associated with mixture models. We removed clusters that contained 
fewer than four somatic mutations.

Defining the clonal independent index of each organ
We defined the clonal independent index of each organ in the five donors 
on the basis of the results from the Bayesian Dirichlet process that was 
used to cluster MCFs of multiple biopsy samples. In brief, the Bayes-
ian Dirichlet process generates mutation clusters and their estimated 
median MCFs across biopsy samples (a matrix with mutation clusters 
in rows and biopsy samples in columns. The values in the matrix are 
the estimated median MCFs). We first removed mutation clusters with 
fewer than four mutations and the remaining clusters were regarded 
as the valid mutation clusters. Then, we ranked the median MCFs of all 
valid mutation clusters across all samples and categorized them into 10 
bins. We considered that a mutation cluster appeared in a specific biopsy 
sample when the median MCF of that mutation cluster in that sample 
was larger than the second lowest MCF bin. After that, we calculated 
the number of biopsy samples that did not share any mutation clusters 
with others (number of independent samples). Finally, we defined the 
independent index of an organ by dividing the number of independent 
samples by the total number of samples with at least one valid mutation 
cluster. We also calculated the average MCFs of the estimated median 
MCFs of valid mutation clusters. Finally, we considered that an elevated 
clonal expansion of mutant cells in a given organ was indicated simultane-
ously by high average MCFs and a low independent index for that organ.

Construction of phylogenetic trees and clonal expansion 
regions
We constructed phylogenetic trees in different organs to depict the 
clonal relationship of multiple normal biopsy samples using MEGAX53. 
In brief, sequences with a 3 base-pair length surrounding all somatic 
mutations (including SNVs and indels) were extracted to construct the 
phylogenetic tree on the basis of the maximum-parsimony algorithm. 
We regarded both SNVs and indels as single events and indels with 
different length contributed equally to SNVs in the construction of 
phylogenetic trees. Phylogenetic trees were further optimized using 
Adobe Illustrator. Clonal expansion regions in oesophagus and liver 
samples were defined according to the clonal sharing events revealed 
by clustering analysis of the MCFs of mutations.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The raw WES and WGS data generated in this study have been deposited 
in the European Genome-phenome Archive (EGA) (https://ega-archive.
org) with accession number EGAD00001007859 and the Genome 
Sequence Archive (GSA) of the Beijing Institute of Genomics with acces-
sion number HRA000356 (https://ngdc.cncb.ac.cn/gsa-human). To 
gain access to the raw sequencing data, please submit requests to the 
Pan-body Mutagenesis Data Access Committee (EGA accession num-
ber EGAC00001002218) or through the GSA online page of this study 
(https://ngdc.cncb.ac.cn/gsa-human/browse/HRA000356). All somatic 
mutations detected from WES with functional annotations and allele 
count information can be found in Supplementary Table 3. RefSeq data-
base: https://www.ncbi.nlm.nih.gov/refseq. NHLBI Exome Sequencing 
Project: http://evs.gs.washington.edu/EVS. dbSNP database: https://
www.ncbi.nlm.nih.gov/snp. COSMIC database: https://cancer.sanger.
ac.uk/cosmic. The GTEx project: https://gtexportal.org/home.

Code availability
Mutational signature analysis was performed using the HDP R package 
v.0.1.5 (https://github.com/nicolaroberts/hdp). Code for mutational 
signature analysis was adapted from https://github.com/HLee-Six/
colon_microbiopsies. Code for the Bayesian Dirichlet process clus-
tering of MCFs was adapted from https://github.com/sfbrunner/
liver-pub-repo. Adapted code is available at Zenodo (https://doi.
org/10.5281/zenodo.5012918). Driver gene analysis was performed 
using the dNdScv v0.01 (https://github.com/im3sanger/dndscv).
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Extended Data Fig. 1 | Normal tissue histology. Representative H&E-stained samples showing the histological features of normal tissues sampled from nine 
organs from the five donors. Blanks in the figure represent samples that are not available in corresponding organs and donors. Scale bars, 100 µm.
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Extended Data Fig. 2 | Detection of somatic mutations. a, Bar plot showing 
the overlap of mutations detected from WES and WGS of 43 samples.  
b, Adjusted numbers of somatic mutations detected in the coding regions in 
tissue biopsies from the organs of five donors. Red vertical bars represent 
median mutation numbers and grey horizontal bars represent standard 
deviations. c, The mutation burdens (after the sensitivity correction) in 
samples with median VAFs between 0.08 and 0.14. Top, box plots showing the 
mutation burdens in organs from different donors. The lower edge, upper edge 

and centre of the box represent the 25th (Q1) percentile, 75th (Q3) percentile 
and the median, respectively. IQR = Q3 – Q1. Outliers are values beyond the 
whiskers (upper, Q3 + 1.5 × IQR; lower, Q1 − 1.5 × IQR). Detailed information 
about the box plots can be found in Supplementary Table 3. Bottom, dot plots 
showing the adjusted mutation burdens in different organs. Red bars represent 
the medians. d, Scatter plots showing the VAFs of somatic mutations detected 
in the normal tissues from the nine organs of the five donors. Dots are coloured 
by mutation type.



Extended Data Fig. 3 | Correlations and interdependence between VAF 
distributions and mutation numbers. In each tissue, we calculated the first 
quantile (Q1) and third quantile (Q3) of the VAF and mutation burden 
distribution. We defined IQR = Q3 – Q1 and considered samples with a median 

VAF or mutation burden greater than Q3 + 1.5 × IQR or less than Q1 – 1.5 × IQR as 
outliers. We excluded these outliers in this analysis. Corr., correlation. The 
error bands represent the 95% confidence intervals. P values are from 
two-sided correlation tests based on the Pearson correlation coefficient.
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Extended Data Fig. 4 | Mutation numbers and somatic CNAs. a, Bar plots 
showing the number of mutations among the four intervals. Genes are divided 
into four intervals according to the tissue-specific gene expression levels.  

b, Heat maps showing somatic CNAs detected in the normal tissues from the 
nine organs of the five donors. Sex chromosomes were excluded.



Extended Data Fig. 5 | Mutational spectra and signature analysis.  
a, t-stochastic neighbour embedding (t-SNE) plots of the trinucleotide 
mutational spectra of biopsy samples from each donor, broken down by organ 
and donor. Only biopsy samples with more than 30 SNVs were included. b, Heat 
map showing the clustering of cosine similarities of the trinucleotide 
mutational context in different samples. Colour bars above indicate 
information of donors and tissue types. c, Trinucleotide mutational spectra for 
the unassigned signature and the seven signatures extracted using a Bayesian 

hierarchical Dirichlet process. The bars represent means (95% credible 
intervals) of the 96 trinucleotide contexts. d, Heat map depicting the cosine 
similarities between extracted mutational signatures and mutational 
signatures from COSMIC and PCAWG catalogues. Cosine similarities between 
the seven extracted mutational signatures and their most similar comparators 
are highlighted. e, Stacked bar plots showing the number of mutations that are 
caused by different mutational signatures.
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Extended Data Fig. 6 | Mutational signature analysis. a, Transcriptional 
strand asymmetries across 96 mutation contexts for SBS4 and SBS22. Bar plots 
show the sum of assignment probabilities across trinucleotide contexts,  
split by whether the pyrimidine is on the template or coding strand.  
b, Transcriptional strand asymmetries across 96 mutation contexts for SBS4 

and SBS22. Only mutations with an assignment probability greater than 0.5 are 
included. c, Trinucleotide mutational spectra of liver, oesophagus, duodenum 
and colon from donor PN1. Purple dots represent data points of the five tissue 
layers. Data are mean + s.d. Typical aristolochic-acid -associated mutational 
features are shaded in blue.



Extended Data Fig. 7 | Intra-donor comparisons of mutational signatures. 
a, The 96 mutation context profiles in two oesophagus samples from donor 
PN7 (top) and two liver samples from donor PN9 (bottom) based on somatic 
mutations detected from WGS. b, Trinucleotide mutational spectra of two 
dissected duodenum layers from donor PN7. Typical aristolochic-acid 

-associated mutational features are shaded in blue. c, H&E stained liver tissue 
(PN9 layer 2 to 4) with superimposed donut charts showing the proportional 
contributions of mutational signatures, as estimated by deconstructSigs. 
Scale bars, 200 µm.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Landscape of driver mutations. a, Mutational 
landscape of the 32 putative driver genes across different organs from the  
5 donors. b, The functional interaction (network of the 32 driver genes. Driver 
genes are in blue nodes and linker genes (those not significantly mutated but 
highly connected to driver genes in the network) are in pink nodes.  
c, Significantly enriched pathways of the 32 driver genes. The vertical red line 
marks a false discovery rate (FDR) of 0.01. d, Bar plot showing the numbers of 
total mutations and cancer hotspot mutations in driver genes. The 
percentages of hotspot mutations are labelled on the top of the bar plot.  

e, Fraction of driver mutations that are private or shared by more than one 
biopsy sample. f, Heat maps showing the ratio of the numbers of observed to 
expected (O/E) driver mutations across different organs (left) and the P values 
for the enrichment (right). P values from one-sided hypergeometric tests. g, 
Bar plots comparing the number of mutations in gastric cancer top-10 most 
frequently mutated driver genes in TCGA with normal stomach and cardia 
samples in this study. Adjustment for multiple comparisons was performed. 
Adjusted P values (q-value) are labelled.
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Extended Data Fig. 9 | Relationships between mutational burdens and average mutant MCFs. Bubble plots show the correlations between average MCFs and 
mutational burdens in biopsy samples across different organs in donors PN1, PN2, PN7, PN8 and PN9.



Extended Data Fig. 10 | Mutant clonal expansion in oesophageal 
epithelium. a, Phylogenetic tree depicting the clonal relationships of the 
biopsy samples of the oesophagus of donor PN9. b, Heat maps show mutation 

clustering, spatial clonal architecture and potential driver mutations or CNAs 
in samples from the oesophagus. Scale bars, 800 µm. c, Heat maps showing 
potential driver mutations and CNAs in oesophagus samples from donor PN9.
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Extended Data Fig. 11 | Representative examples of large scale mutant 
clonal expansion. a, Heat map showing the mutation clustering in liver 
samples from donor PN9. b, Spatial clonal architecture of liver tissue from 
donor PN9. The numbers in each layer represent the positions of LCM biopsy 

samples. The overlaid colours correspond to a and indicate the ranges of clonal 
expansions. c, Heat maps show mutation clustering in samples from the 
representative organs. Each cluster contains mutations with similar MCFs.



Extended Data Fig. 12 | Representative examples of independent clonal 
evolution. a, Phylogenetic tree depicting the clonal relationships of colon 
biopsy samples from donor PN9. b, Heat maps showing clustered mutations in 

samples from representative organs. Each cluster contains mutations with 
similar MCFs.
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